
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (11): 1937-1946.DOI: 10.16553/j.cnki.issn1000-985x.2025.0120
肖伟民1(
), 聂京凯2, 赵俊娟1, 户文成1, 韩钰2, 石磊3
收稿日期:2025-06-01
出版日期:2025-11-20
发布日期:2025-12-11
作者简介:肖伟民(1983—),男,北京市人,博士,副研究员。E-mail:xiaoweimin2025@163.com
基金资助:
XIAO Weimin1(
), NIE Jingkai2, ZHAO Junjuan1, HU Wencheng1, HAN Yu2, SHI Lei3
Received:2025-06-01
Online:2025-11-20
Published:2025-12-11
摘要: 陀螺超材料的研究为拓扑声学开辟了新方向。基于对结构中扭转波传播的研究,通过将陀螺结构引入凹六边形无限周期离散介质,提出了一种具有凹六边形晶格的陀螺声子晶体(GPC)。本文分析了GPC的带隙特性,讨论了陀螺力矩变化导致狄拉克锥打开和拓扑边界态产生的机制。随后,细致研究了陀螺转速对带隙的影响,发现了能带反转等现象。通过破坏结构对称性和时间反演对称性,可在同一拓扑陀螺超材料中打开的两个带隙附近都发现拓扑边界态的存在。将研究扩展到分析拓扑陀螺超材料的超胞,讨论了不同排列下两个新带隙中拓扑界面的波传播特性,揭示了拓扑陀螺超材料上下带隙拓扑边界态的方向性差异。此外,还证明了陀螺超材料拓扑边界态对缺陷的鲁棒性。
中图分类号:
肖伟民, 聂京凯, 赵俊娟, 户文成, 韩钰, 石磊. 凹六边形陀螺声子晶体的拓扑边界态研究[J]. 人工晶体学报, 2025, 54(11): 1937-1946.
XIAO Weimin, NIE Jingkai, ZHAO Junjuan, HU Wencheng, HAN Yu, SHI Lei. Topological Edge States of Concave Hexagonal Gyroscopic Phononic Crystals[J]. Journal of Synthetic Crystals, 2025, 54(11): 1937-1946.
图1 (a)连接弹簧的凹六边形GPC结构的单胞示意图;(b)凹六边形晶格示意图
Fig.1 (a) Schematic of unit cell of the concave hexagonal GPC structure connecting with springs; (b) schematic of the concave hexagonal lattice
图5 具有拓扑界面的陀螺超材料布置图和频率在451 Hz时不同时间下的位移场
Fig.5 Gyroscopic metamaterial with a topological interface and displacement fields with 451 Hz at different times
图9 具有拓扑边界的陀螺超材料布置图和下侧带隙附近的位移场
Fig.9 Gyroscopic metamaterial with a topological interface and displacement fields with frequencies at the lower band gap. (a) GPC with type B upside and type A downside, (b) 81 Hz, (c) 95 Hz, (d) GPC with type A upside and type B downside with 95 Hz
图10 九宫格陀螺超材料布置图和上侧带隙上下边界附近的位移场
Fig.10 Gyroscopic metamaterial with nine cells and displacement fields with frequencies on the edge of the upper band gap. (a) GPC with nine cells combined with types A upside and B, (b) 450 Hz at node Ⅰ, (c) 450 Hz at node Ⅳ, (d) 352 Hz at node Ⅳ, (e) 352 Hz at node Ⅰ
图11 具有两种点缺陷的陀螺超材料布置图和拓扑边界频率下的位移场
Fig.11 Gyroscopic metamaterial with defects and displacement fields with two types of defects. (a) GPC with defects on the interface, (b) 451 Hz with common defect, (c) 451 Hz with reverse defect, (d) 352 Hz with common defect, (e) 352 Hz with reverse defect, (f) 102 Hz with common defect, (g) 102 Hz with reverse defect
| [1] | 陈鸿翔, 刘墨点, 范智斌, 等. 低对称性能谷光子晶体中的拓扑光传输[J]. 物理学报, 2024, 73(10): 104205. |
| CHEN H X, LIU M D, FAN Z B, et al. Topological light transport in low-symmetry valley photonic crystals[J]. Acta Physica Sinica, 2024, 73(10): 104205 (in Chinese). | |
| [2] | 徐炅阳, 余秋子, 张佳龙, 等. 基于数据驱动的声振耦合系统微结构拓扑优化方法研究[J]. 振动与冲击, 2025, 44(8): 133-142. |
| XU J Y, YU Q Z, ZHANG J L, et al. Research on data-driven topology optimization method for microstructures of acoustic-structure interaction system[J]. Journal of Vibration and Shock, 2025, 44(8): 133-142 (in Chinese). | |
| [3] | XUE H R, YANG Y H, ZHANG B L. Topological acoustics[J]. Nature Reviews Materials, 2022, 7(12): 974-990. |
| [4] | 孙晓晨, 何 程, 卢明辉, 等. 人工带隙材料的拓扑性质[J]. 物理学报, 2017, 66(22): 224203. |
| SUN X C, HE C, LU M H, et al. Topological properties of artificial bandgap materials[J]. Acta Physica Sinica, 2017, 66(22): 224203 (in Chinese). | |
| [5] | 郭振坤, 李凤明. 超材料结构的弹性波带隙主动调控研究进展[J]. 科学通报, 2022, 67(12): 1249-1263. |
| GUO Z K, LI F M. Advances in active tuning of elastic wave band gaps in metamaterial structures[J]. Chinese Science Bulletin, 2022, 67(12): 1249-1263 (in Chinese). | |
| [6] | ZHOU X L, SUN Y L, YANG S, et al. Band gap manipulation on P-wave propagating in functionally graded phononic crystal by periodical thermal field[J]. International Journal of Mechanical Sciences, 2021, 212: 106817. |
| [7] | 郭文杰, 洪 显, 罗文俊, 等. 振幅增强型超材料梁中弹性波的复能带特性分析[J]. 振动工程学报, 2025, 38(3): 499-506. |
| GUO W J, HONG X, LUO W J, et al. Complex band structure characterization of elastic waves in amplitude enhanced metamaterial beams[J]. Journal of Vibration Engineering, 2025, 38(3): 499-506 (in Chinese). | |
| [8] | 李小双, 蒋帅, 郭振坤. 基于超材料的周期管道系统弯曲波带隙分析及控制[J]. 2025, 54(4): 589-597. |
| LI X S, JIANG S, GUO Z K. Flexural waves band gap analysis and control in metamaterial-based periodic pipeline systems[J]. Journal of Synthetic Crystals, 2025, 54(4): 589-597 (in Chinese). | |
| [9] | CHEN K K, DONG X J, PENG Z K, et al. Reconfigurable topological gradient metamaterials and potential applications[J]. Thin-Walled Structures, 2024, 205: 112572. |
| [10] | LUO L, WANG H X, LIN Z K, et al. Observation of a phononic higher-order Weyl semimetal[J]. Nature Materials, 2021, 20(6): 794-799. |
| [11] | WU X D, QU Y X, QI P X, et al. Research on targeted modulation of elastic wave bandgap in cantilever-structured piezoelectric phononic crystals[J]. Journal of Sound and Vibration, 2024, 583: 118434. |
| [12] | BAZ A. Active synthesis of a gyroscopic-nonreciprocal acoustic metamaterial[J]. The Journal of the Acoustical Society of America, 2020, 148(3): 1271. |
| [13] | GARAU M, CARTA G, NIEVES M J, et al. Interfacial waveforms in chiral lattices with gyroscopic spinners[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2018, 474(2215): 20180132. |
| [14] | CARTA G, JONES I S, MOVCHAN N V, et al. Wave polarization and dynamic degeneracy in a chiral elastic lattice[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2019, 475(2232): 20190313. |
| [15] | NIEVES M J, CARTA G, PAGNEUX V, et al. Rayleigh waves in micro-structured elastic systems: non-reciprocity and energy symmetry breaking[J]. International Journal of Engineering Science, 2020, 156: 103365. |
| [16] | 王伟能, 杨晓东, 张 伟. 二维三角陀螺声子晶体的波调控研究[J]. 动力学与控制学报, 2021, 19(1): 75-79. |
| WANG W N, YANG X D, ZHANG W. Study on wave manipulation in 2-d traingular gyroscope phononic crystals[J]. Journal of Dynamics and Control, 2021, 19(1): 75-79 (in Chinese). | |
| [17] | ZHANG Q, CHEN Y, ZHANG K, et al. Dirac degeneracy and elastic topological valley modes induced by local resonant states[J]. Physical Review B, 2020, 101: 014101. |
| [18] | QIAN Y J, WANG Y B, YANG X D, et al. Manipulation of circular polarization and mechanical waves in gyroscopic metamaterials[J]. Physical Review Applied, 2024, 22(5): 054016. |
| [19] | YANG J H, WANG Y B, YANG X D. Dynamical characteristics of honeycomb two-dimensional gyroscopic metamaterials[J]. Physical Review E, 2024, 109(): 014227. |
| [20] | WANG P, LU L, BERTOLDI K. Topological phononic crystals with one-way elastic edge waves[J]. Physical Review Letters, 2015, 115(10): 104302. |
| [21] | MITCHELL N P, TURNER A M, IRVINE W T M. Real-space origin of topological band gaps, localization, and reentrant phase transitions in gyroscopic metamaterials[J]. Physical Review E, 2021, 104(2): 025007. |
| [22] | GARAU M, NIEVES M J, CARTA G, et al. Transient response of a gyro-elastic structured medium: unidirectional waveforms and cloaking[J]. International Journal of Engineering Science, 2019, 143: 115-141. |
| [23] | CARTA G, BRUN M, MOVCHAN A B, et al. Dispersion properties of vortex-type monatomic lattices[J]. International Journal of Solids and Structures, 2014, 51(11/12): 2213-2225. |
| [24] | CARTA G, JONES I S, MOVCHAN N V, et al. “Deflecting elastic prism” and unidirectional localisation for waves in chiral elastic systems[J]. Scientific Reports, 2017, 7: 26. |
| [25] | WANG Z Y, YE L P, PU Z H, et al. Higher-order topological transport protected by boundary Chern number in phononic crystals[J]. Communications Physics, 2024, 7: 193. |
| [1] | 魏玉华, 陈新华, 蒋帅, 李小双, 王建广. 弯曲弹性梁多稳态超材料带隙调控特性研究[J]. 人工晶体学报, 2025, 54(5): 832-840. |
| [2] | 李雯婧, 田俊红, 李仁生, 李佳宁, 孙小伟. 用多孔衬里穿孔夹层结构改善双层板的低频传声损失[J]. 人工晶体学报, 2025, 54(4): 581-588. |
| [3] | 李小双, 蒋帅, 郭振坤. 基于超材料的周期管道系统弯曲波带隙分析及控制[J]. 人工晶体学报, 2025, 54(4): 589-597. |
| [4] | 李翔宇, 韩华, 王扬, 姚夏元. 对入射角和极化不敏感的THz超材料传感器设计[J]. 人工晶体学报, 2025, 54(1): 59-68. |
| [5] | 张玖林, 田霞. 含螺旋孔的超材料夹层板的带隙特性研究[J]. 人工晶体学报, 2024, 53(3): 511-518. |
| [6] | 刘松, 赵仁洁, 杜一帆, 吴芳, 宋和滨, 高鹏. 声学双曲构型超材料的负折射特性研究[J]. 人工晶体学报, 2024, 53(2): 246-251. |
| [7] | 闫文惠, 刘禧萱, 方添寅, 孙小伟, 温晓东, 欧阳玉花. 大尺寸非对称薄膜型声学超材料的低频隔声特性研究[J]. 人工晶体学报, 2023, 52(8): 1441-1450. |
| [8] | 张祖坚, 郭辉, 王晓玮, 袁涛, 孙裴. 边界载荷对层级椭圆穿孔板超材料带隙的影响[J]. 人工晶体学报, 2023, 52(2): 261-270. |
| [9] | 李丽霞, 李鹏国, 贾琪, 李玲. 田字形地震超材料甚低频宽带隙机理[J]. 人工晶体学报, 2022, 51(3): 419-427. |
| [10] | 王兆宏, 罗怡坤, 楚杨阳. 仿生声学超材料的声波控制及水下应用研究进展[J]. 人工晶体学报, 2021, 50(7): 1234-1247. |
| [11] | 刘成龙;许卫锴;吕树辰;祁武超. 一种弯曲主导型热膨胀点阵超材料的带隙特性研究[J]. 人工晶体学报, 2020, 49(10): 1782-1786. |
| [12] | 梁月强;范伟丽;弓丹丹. 等离子体光子晶体研究进展综述[J]. 人工晶体学报, 2018, 47(10): 2051-2057. |
| [13] | 朱宇光;孙雯雯;方云团. 基于石墨烯超材料的极化控制开关[J]. 人工晶体学报, 2017, 46(5): 926-930. |
| [14] | 张佳龙;姚宏;杜军;赵静波;董亚科;祁鹏山. 薄膜型声学超材料板结构隔声特性分析[J]. 人工晶体学报, 2016, 45(10): 2549-2555. |
| [15] | 张艳荣;王纪俊;方云团;徐雷钧;朱志盼;贡磊磊. 复合方形环近零折射率超材料的高增益特性研究[J]. 人工晶体学报, 2014, 43(8): 2154-2158. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS