[1] WANG J, XU F, JIN H Y, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materials, 2017, 29(14): 1605838. [2] ZHENG J Y, HAIDER Z, VAN T K, et al. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications[J]. Cryst Eng Comm, 2015, 17(32): 6070-6093. [3] WANG J C, ZHANG Y, ZHOU T S, et al. Efficient WO3-x nanoplates photoanode based on bidentate hydrogen bonds and thermal reduction of ethylene glycol[J]. Chemical Engineering Journal, 2021, 404: 127089. [4] GOMIS-BERENGUER A, INIESTA J, FERMÍN D, et al. Photoelectrochemical response of WO3/nanoporous carbon anodes for photocatalytic water oxidation[J]. C-Journal of Carbon Research, 2018, 4(3): 45. [5] BAI S L, ZHANG K W, SHU X, et al. Carboxyl-directed hydrothermal synthesis of WO3nanostructures and their morphology-dependent gas-sensing properties[J]. Cryst Eng Comm, 2014, 16(44): 10210-10217. [6] LI D, CHANDRA D, TAKEUCHI R, et al. Dual-functional surfactant-templated strategy for synthesis of an in situ N2-intercalated mesoporous WO3 photoanode for efficient visible-light-driven water oxidation[J]. Chemistry-A European Journal, 2017, 23(27): 6596-6604. [7] OHNO T, SARUKAWA K, MATSUMURA M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions[J]. New Journal of Chemistry, 2002, 26(9): 1167-1170. [8] WANG Y D, TIAN W, CHEN C, et al. Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation[J]. Advanced Functional Materials, 2019, 29(23): 1809036. [9] ZHENG J Y, SONG G, KIM C W, et al. Fabrication of (001)-oriented monoclinic WO3 films on FTO substrates[J]. Nanoscale, 2013, 5(12): 5279. [10] WANG S, LIU G, WANG L. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting[J]. Chemical Reviews, 2019, 119(8): 5192-5247. [11] ZHENG J Y, PAWAR A U, KIM C W, et al. Highly enhancing photoelectrochemical performance of facilely-fabricated Bi-induced (002)-oriented WO3 film with intermittent short-time negative polarization[J]. Applied Catalysis B: Environmental, 2018, 233: 88-98. [12] GUO Y, QUAN X, LU N, et al. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes[J]. Environmental Science & Technology, 2007, 41(12): 4422-4427. [13] TSAI Y H, CHIU C Y, HUANG M H. Fabrication of diverse Cu2O nanoframes through face-selective etching[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24611-24617. [14] VENKATESAN H, AROULMOJI V, SEKAR C, et al. Synthesis of tungsten oxide (WO3) nanoparticles with EDTA by microwave irradiation method[J]. International Journal of Advanced Science and Engineering, 2016, 3(299): 299-307. [15] ZHENG G W, WANG J S, ZU G N, et al. Sandwich structured WO3 nanoplatelets for highly efficient photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2019, 7(45): 26077-26088. [16] KONG L N, GUO X, XU J P, et al. Morphology control of WO3 nanoplate film on W foil by oxalic acid for photocatalytic gaseous acetaldehyde degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401: 112760. [17] KAPER H, DJERDJ I, GROSS S, et al. Ionic liquid- and surfactant-controlled crystallization of WO3 films[J]. Physical Chemistry Chemical Physics, 2015, 17(27): 18138-18145. [18] ZHANG J J, ZHANG P, WANG T, et al. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting[J]. Nano Energy, 2015, 11: 189-195. [19] YANG J Q, GUO C, ZHANG J, et al. Organic acid assisted one-pot synthesis of highly oriented h-WO3 as an anode material for lithium-ion batteries[J]. Sustainable Energy & Fuels, 2018, 2(11): 2526-2531. [20] HARIHARAN V, RADHAKRISHNAN S, PARTHIBAVARMAN M, et al. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications[J]. Talanta, 2011, 85(4): 2166-2174. [21] LI Y J, LIU Z F, LIANG X P, et al. Synthesis and electrochromic properties of PEG doped WO3 film[J]. Materials Technology, 2014, 29(6): 341-349. [22] GO G H, SHINDE P S, DOH C H, et al. PVP-assisted synthesis of nanostructured transparent WO3 thin films for photoelectrochemical water splitting[J]. Materials & Design, 2016, 90: 1005-1009. [23] ELSAYED E M, ELNOUBY M S, GOUDA M H, et al. Effect of the morphology of tungsten oxide embedded in sodium alginate/polyvinylpyrrolidone composite beads on the photocatalytic degradation of methylene blue dye solution[J]. Materials, 2020, 13(8): 1905. [24] WEI H G, YAN X R, LI Y F, et al. Electrochromic poly(DNTD)/WO3 nanocomposite films via electorpolymerization[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16286-16293. [25] KALANUR S S, DUY L T, SEO H. Recent progress in photoelectrochemical water splitting activity of WO3 photoanodes[J]. Topics in Catalysis, 2018, 61(9/10/11): 1043-1076. [26] 林建楠,胡 适.WO3纳米片阵列在光电全解水中的应用[J].当代化工,2020,49(2):377-379+445. LIN J N, HU S. Photoelectrocatalytic water splitting performance of WO3 nanoplate arrays[J]. Contemporary Chemical Industry, 2020, 49(2): 377-379+445(in Chinese). [27] 丁春梅,姚婷婷,李 灿.光电催化分解水和还原CO2研究进展[J].科技导报,2020,38(23):75-84. DING C M, YAO T T, LI C. Progress of photoelectrocatalytic water splitting and CO2 reduction[J]. Science & Technology Review, 2020, 38(23): 75-84(in Chinese). [28] YANG Y H, ZHAN F Q, LI H, et al. In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid[J]. Journal of Solid State Electrochemistry, 2017, 21(8): 2231-2240. [29] 李茹萍,李贵生,李和兴. 阳极氧化制备泡沫状WO3用于光电催化污染物降解[C]//第二届全国光催化材料创新与应用学术研讨会,2018. LI R P, LI G S, LI H X. Preparation of foamed WO3 by anodic oxidation for Photoelectrochemical degradation of pollutants[C]//Second Symposium on innovation and application of photocatalytic materials, 2018(in Chinese). [30] YI H, HUANG D L, QIN L, et al. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production[J]. Applied Catalysis B: Environmental, 2018, 239: 408-424. [31] YAN M, WU Y L, ZHU F F, et al. The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 3308-3315. [32] 姜子龙.Co-Pi/WO3纳米片光电极的制备及其光电协同降解苯酚[J].化工技术与开发,2017,46(5):43-46. JIANG Z L. Synthesis of Co-Pi/WO3 nanosheet photoanode and its photoelectrocatalytic degradation of phenol[J]. Technology & Development of Chemical Industry, 2017, 46(5): 43-46(in Chinese). [33] KIM T H, HASANI A, QUYET L V, et al. NO2 sensing properties of porous Au-incorporated tungsten oxide thin films prepared by solution process[J]. Sensors and Actuators B: Chemical, 2019, 286: 512-520. [34] XU W, QIU C J, ZHOU J, et al. Regulation of specific surface area of 3D flower-like WO3 hierarchical structures for gas sensing application[J]. Ceramics International, 2020, 46(8): 11372-11378. [35] ZHANG G G, NI H Z, ZHANG X C, et al. Electrochromic properties of WO3 film by spin-coating[J]. Chinese Journal of Luminescence, 2019, 40(2): 183-188. [36] ZHAN Y H, YANG Z W, XU Z, et al. Electrochromism induced reversible upconversion luminescence modulation of WO3∶Yb3+, Er3+ inverse opals for optical storage application[J]. Chemical Engineering Journal, 2020, 394: 124967. |