[1] 彭家奕,夏雪峰,江奕华,等.无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J].材料导报,2018,32(23):4027-4040+4060. PENG J Y, XIA X F, JIANG Y H, et al. Application of inorganic charge transportation layers in organic-inorganic hybrid perovskite solar cells: a review[J]. Materials Review, 2018, 32(23): 4027-4040+4060(in Chinese). [2] WANG Z Y, ZHU X J, ZUO S N, et al. 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh[J]. Advanced Functional Materials, 2020, 30(4): 1908298. [3] BAIKIE T, FANG Y N, KADRO J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013, 1(18): 5628-5641. [4] SUN S Y, SALIM T, MATHEWS N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J]. Energy Environ Sci, 2014, 7(1): 399-407. [5] OGOMI Y, MORITA A, TSUKAMOTO S, et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm[J]. The Journal of Physical Chemistry Letters, 2014, 5(6): 1004-1011. [6] D'INNOCENZO V, GRANCINI G, ALCOCER M J P, et al. Excitons versus free charges in organo-lead tri-halide perovskites[J]. Nature Communications, 2014, 5: 3586. [7] JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8): 682-689. [8] KIM H S, IM S H, PARK N G. Organolead halide perovskite: new horizons in solar cell research[J]. Journal of Physical Chemistry C, 2014, 118(11): 5615-5625. [9] LI J L, XIA R, QI W J, et al. Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization[J]. Journal of Power Sources, 2021, 485: 229313. [10] 张永飞.钙钛矿太阳能电池的稳定性研究及其性能优化[D].大连:大连理工大学,2019. ZHANG Y F. Improving the stability and property of perovskite solar cells[D]. Dalian: Dalian University of Technology, 2019(in Chinese). [11] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319. [12] 杨立群,马晓辉,郑士建,等.柔性钙钛矿太阳能电池中电极材料和电荷传输材料的研究进展[J].发光学报,2020,41(10):1175-1194. YANG L Q, MA X H, ZHENG S J, et al. Research progress on electrode materials and charge transport materials in flexible perovskite solar cells[J]. Chinese Journal of Luminescence, 2020, 41(10): 1175-1194(in Chinese). [13] 张继涛.基于溶剂配位-反溶剂萃取法的CH3NH3PbI3钙钛矿薄膜质量调控及其光伏器件性能研究[D].太原:太原理工大学,2017. ZHANG J T. Quality control of CH3 NH3PbI3 perovskite thin films based on solvent coordination antisolvent extraction and their photovoltaic device performance[D]. Taiyuan: Taiyuan University of Technology, 2017(in Chinese). [14] GREEN M A. Corrigendum to ‘Solar cell efficiency tables (version 49)'[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(4): 333-334. [15] 朱立华,商雪妮,雷凯翔,等.应用于钙钛矿太阳能电池中金属氧化物电子传输材料的研究进展[J].发光学报,2020,41(5):481-497. ZHU L H, SHANG X N, LEI K X, et al. Research progress of metal oxide electron transporting materials applied in perovskite solar cells[J]. Chinese Journal of Luminescence, 2020, 41(5): 481-497(in Chinese). [16] EPERON G E, BURLAKOV V M, GORIELY A, et al. Neutral color semitransparent microstructured perovskite solar cells[J]. ACS Nano, 2014, 8(1): 591-598. [17] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [18] LAKHDAR N, HIMA A. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3[J]. Optical Materials, 2020, 99: 109517. [19] CHAUDHARY J, GUPTA S K, VERMA A S, et al. Impact of electron transport layer material on the performance of CH3 NH3PbBr3 perovskite-based photodetectors[J]. Journal of Materials Science, 2020, 55(10): 4345-4357. [20] 张洁静.基于TiO2/BaTiO3核壳结构介孔层的钙钛矿太阳电池的制备与性能研究[D].长春:吉林大学,2019. ZHANG J J. Preparation and performance of perovskite solar cells based on TiO2/BaTiO3 core-shell mesoporous layers[D]. Changchun: Jilin University, 2019(in Chinese). [21] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. [22] GUO Y L, SHOYAMA K, SATO W, et al. Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells[J]. Advanced Energy Materials, 2016, 6(6): 1502317. [23] ZHANG Q F, DANDENEAU C S, ZHOU X Y, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Advanced Materials, 2009, 21(41): 4087-4108. [24] LUO J, WANG Y X, ZHANG Q F. Progress in perovskite solar cells based on ZnO nanostructures[J]. Solar Energy, 2018, 163: 289-306. [25] KUMAR M H, YANTARA N, DHARANI S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J]. Chemical Communications (Cambridge, England), 2013, 49(94): 11089-11091. [26] KIM J, KIM G, KIM T K, et al. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer[J]. J Mater Chem A, 2014, 2(41): 17291-17296. [27] MAHMOOD K, SWAIN B S, AMASSIAN A. 16.1% efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays[J]. Advanced Energy Materials, 2015, 5(17): 1500568. [28] REHMAN F, MAHMOOD K, KHALID A, et al. Solution-processed barium hydroxide modified boron-doped ZnO bilayer electron transporting materials: toward stable perovskite solar cells with high efficiency of over 20.5%[J]. Journal of Colloid and Interface Science, 2019, 535: 353-362. [29] JIANG Q, ZHANG X W, YOU J B. SnO2: a wonderful electron transport layer for perovskite solar cells[J]. Small, 2018, 14(31): 1801154. [30] YU Y H, LI J Y, GENG D L, et al. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures[J]. ACS Nano, 2015, 9(1): 564-572. [31] REN X D, YANG D, YANG Z, et al. Solution-processed Nb∶SnO2 electron transport layer for efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2421-2429. [32] HUANG L K, SUN X X, LI C, et al. UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21909-21920. [33] 朱世杰,丁 毅,郑翠翠,等.SnCl4醇水溶液制备SnO2电子传输层及其在钙钛矿太阳电池中的应用[J].人工晶体学报,2017,46(10):1885-1890+1896. ZHU S J, DING Y, ZHENG C C, et al. Preparation of SnO2 electron transport layer using SnCl4 alcohol aqueous solution and its application in perovskite solar cells[J]. Journal of Synthetic Crystals, 2017, 46(10): 1885-1890+1896(in Chinese). [34] YUN A J, KIM J, HWANG T, et al. Origins of efficient perovskite solar cells with low-temperature processed SnO2 electron transport layer[J]. ACS Applied Energy Materials, 2019, 2(5): 3554-3560. [35] 王艳香,高培养,范学运,等.界面修饰对SnO2基钙钛矿太阳能电池的影响研究[J].陶瓷学报,2020,41(4):500-507. WANG Y X, GAO P Y, FAN X Y, et al. Effect of interface modification on the performances of SnO2-based perovskite solar cells[J]. Journal of Ceramics, 2020, 41(4): 500-507(in Chinese). [36] WANG Y X, GAO P Y, FAN X Y, et al. Effect of SnO2 annealing temperature on the performance of perovskite solar cells[J]. Journal of Inorganic Materials, 2021, 36(2): 168. [37] WANG H B, LIU H R, YE F H, et al. Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with efficiency exceeding 22%[J]. Journal of Power Sources, 2021, 481: 229160. [38] LEE Y H, LUO J S, SON M K, et al. Enhanced charge collection with passivation layers in perovskite solar cells[J]. Advanced Materials, 2016, 28(20): 3966-3972. [39] BI D Q, MOON S J, HÄGGMAN L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. RSC Advances, 2013, 3(41): 18762. [40] LEE J H, SHIN D, RHEE R, et al. Band alignment engineering between planar SnO2 and halide perovskites via two-step annealing[J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6545-6550. [41] WANG P Y, LI R J, CHEN B B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%[J]. Advanced Materials, 2020, 32(6): 1905766. [42] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647. [43] ALI F, PHAM N D, FAN L J, et al. Low hysteresis perovskite solar cells using an electron-beam evaporated WO3-x thin film as the electron transport layer[J]. ACS Applied Energy Materials, 2019, 2(8): 5456-5464. [44] 王传坤,唐 颖,刘 辉.基于PCBM电子传输层的有机太阳能电池理论研究[J].化工新型材料,2019,47(3):181-184+188. WANG C K, TANG Y, LIU H. Theoretical study of heterojunction organic solar cell based on PCBM electronic buffer layer[J]. New Chemical Materials, 2019, 47(3): 181-184+188(in Chinese). [45] WOJCIECHOWSKI K, LEIJTENS T, SIPROVA S, et al. C60 as an efficient n-type compact layer in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2015, 6(12): 2399-2405. [46] LI S H, XING Z, WU B S, et al. Hybrid fullerene-based electron transport layers improving the thermal stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20733-20740. [47] HUANG J C, GU Z W, ZUO L J, et al. Morphology control of planar heterojunction perovskite solar cells with fluorinated PDI films as organic electron transport layer[J]. Solar Energy, 2016, 133: 331-338. [48] 汪霏霏,汪 东,张国兵,等.低LUMO/HOMO共轭聚合物的制备及其电子传输性能[J].液晶与显示,2018,33(8):638-644. WANG F F, WANG D, ZHANG G B, et al. Preparation and electron transport properties of low LUMO/HOMO conjugated polymers[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(8): 638-644(in Chinese). [49] LIU H R, LI S H, DENG L L, et al. Pyridine-functionalized fullerene electron transport layer for efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 23982-23989. [50] CHEN W, SHI Y Q, WANG Y, et al. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%[J]. Nano Energy, 2020, 68: 104363. [51] SAWICKA-CHUDY P, SIBIN'SKI M, RYBAK-WILUSZ E, et al. Review of the development of copper oxides with titanium dioxide thin-film solar cells[J]. AIP Advances, 2020, 10(1): 010701. [52] KIM H S, LEE J W, YANTARA N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Letters, 2013, 13(6): 2412-2417. [53] YU W, LI F, WANG H, et al. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells[J]. Nanoscale, 2016, 8(11): 6173-6179. [54] BEEDRI N I, BAVISKAR P K, SUPEKAR A T, et al. Bilayered ZnO/Nb2O5 photoanode for dye sensitized solar cell[J]. International Journal of Modern Physics B, 2018, 32(19): 1840046. [55] ZHANG C X, DENG X S, ZHENG J F, et al. Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells[J]. Electrochimica Acta, 2018, 283: 1134-1145. [56] LEE K M, LIN W J, CHEN S H, et al. Control of TiO2 electron transport layer properties to enhance perovskite photovoltaics performance and stability[J]. Organic Electronics, 2020, 77: 105406. [57] HU W P, YANG S F, YANG S H. Surface modification of TiO2 for perovskite solar cells[J]. Trends in Chemistry, 2020, 2(2): 148-162. [58] HUANG Y Y, LI S N, WU C R, et al. Interfacial modification of various alkali metal cations in perovskite solar cells and their influence on photovoltaic performance[J]. New Journal of Chemistry, 2020, 44(21): 8902-8909. [59] AHMADI S H, GHAFFARKANI M, AMERI M, et al. Solvent selection for fabrication of low temperature ZnO electron transport layer in perovskite solar cells[J]. Optical Materials, 2020, 106: 109977. [60] ZHU Q, WANG Z J, CAI X W, et al. Enhanced carrier separation efficiency and performance in planar-structure perovskite solar cells through an interfacial modifying layer of ultrathin mesoporous TiO2[J]. Journal of Power Sources, 2020, 465: 228251. [61] SHAHVARANFARD F, ALTOMARE M, HOU Y, et al. Engineering of the electron transport layer/perovskite interface in solar cells designed on TiO2 rutile nanorods[J]. Advanced Functional Materials, 2020, 30(10): 1909738. |