人工晶体学报 ›› 2021, Vol. 50 ›› Issue (7): 1287-1306.
王丹燕, 李墨馨, 陆如斯, 张诚
收稿日期:
2021-06-16
出版日期:
2021-07-15
发布日期:
2021-08-16
通讯作者:
张诚,博士,教授。E-mail:cheng.zhang@hust.edu.cn
作者简介:
王丹燕(1989—),女,山东省人,博士。E-mail:danyanwang@hust.edu.cn
基金资助:
WANG Danyan, LI Moxin, LU Rusi, ZHANG Cheng
Received:
2021-06-16
Online:
2021-07-15
Published:
2021-08-16
摘要: 多层膜结构色滤光片不仅结构简单适合大规模生产,而且所呈现的颜色纯度高、亮度大、不易褪色,因此在光学显示、彩色印刷、美学装饰以及新型光伏等领域有着潜在的应用价值。本文将总结基于多层膜结构设计的彩色滤光片在近年来的研究进展,包括产生不同颜色的两种典型结构及背后的物理机制,多层膜结构色滤光片的制备方法(包括磁控溅射、电子束蒸发、电化学沉积等)以及在彩色太阳能电池、彩色印刷以及新型显示等领域的应用现状,并对多层膜结构色滤光片的发展前景进行展望。
中图分类号:
王丹燕, 李墨馨, 陆如斯, 张诚. 多层膜结构色滤光片的原理、制备及应用[J]. 人工晶体学报, 2021, 50(7): 1287-1306.
WANG Danyan, LI Moxin, LU Rusi, ZHANG Cheng. Multilayer Thin Film Based Structural Color Filters: Principle, Fabrication and Applications[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(7): 1287-1306.
[1] CHO K M, JANG J H, HONG K S. Adaptive skin-color filter[J]. Pattern Recognition, 2001, 34(5): 1067-1073. [2] GUNTURK B K, GLOTZBACH J, ALTUNBASAK Y, et al. Demosaicking: color filter array interpolation[J]. IEEE Signal Processing Magazine, 2005, 22(1): 44-54. [3] ADAMS J E. Design of practical color filter array interpolation algorithms for digital cameras.2[C]//Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269). October 7-7, 1998, Chicago, IL, USA. IEEE, 1998: 488-492. [4] LEE H S, YOON Y T, LEE S S, et al. Color filter based on a subwavelength patterned metal grating[J]. Optics Express, 2007, 15(23): 15457. [5] LUKAC R, PLATANIOTIS K N. Color filter arrays: design and performance analysis[J]. IEEE Transactions on Consumer Electronics, 2005, 51(4): 1260-1267. [6] POPESCU A C, FARID H. Exposing digital forgeries in color filter array interpolated images[J]. IEEE Transactions on Signal Processing, 2005, 53(10): 3948-3959. [7] SABNIS R W. Color filter technology for liquid crystal displays[J]. Displays, 1999, 20(3): 119-129. [8] PEI S C, TAM I K. Effective color interpolation in CCD color filter arrays using signal correlation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(6): 503-513. [9] LU W M, TAN Y P. Color filter array demosaicking: new method and performance measures[J]. IEEE Transactions on Image Processing, 2003, 12(10): 1194-1210. [10] CHOI J, CHUN S K, CHOI J H, et al. Synthesis and characterization of some perylene dyes for dye-based LCD color filters[J]. Dyes and Pigments, 2011, 90(1): 82-88. [11] KIM Y D, KIM J P, KWON O S, et al. The synthesis and application of thermally stable dyes for ink-jet printed LCD color filters[J]. Dyes and Pigments, 2009, 81(1): 45-52. [12] NAMGOONG J W, KIM S H, CHUNG S W, et al. Aryloxy- and chloro-substituted zinc(Ⅱ) phthalocyanine dyes: synthesis, characterization, and application for reducing the thickness of color filters[J]. Dyes and Pigments, 2018, 154: 128-136. [13] LIN H H, LEE C H, LU M H. Dye-less color filter fabricated by roll-to-roll imprinting for liquid crystal display applications[J]. Opt Express, 2009, 17(15): 12397-406. [14] CHUN S K, KIM Y D, CHOI J H, et al. The synthesis of thermally-stable red dyes for LCD color filters and analysis of their aggregation and spectral properties[J]. Dyes and Pigments, 2011, 88(2): 166-173. [15] WÖHRLE D, SCHNURPFEIL G, MAKAROV S G, et al. Practical applications of phthalocyanines: from dyes and pigments to materials for optical, electronic and photo-electronic devices[J]. Macroheterocycles, 2012, 5(3): 191-202. [16] DUAN X Y, LIU N. Scanning plasmonic color display[J]. ACS Nano, 2018, 12(8): 8817-8823. [17] FLAURAUD V, REYES M, PANIAGUA-DOMÍNGUEZ R, et al. Silicon nanostructures for bright field full color prints[J]. ACS Photonics, 2017, 4(8): 1913-1919. [18] HOLSTEEN A L, CIHAN A F, BRONGERSMA M L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces[J]. Science, 2019, 365(6450): 257-260. [19] HUERTAS R, ÁNGEL MARTÍNEZ-DOMINGO M, VALERO E M, et al. Metasurface-based contact lenses for color vision deficiency: comment[J]. Optics Letters, 2020, 45(18): 5117. [20] HUO P C, SONG M W, ZHU W Q, et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface[J]. Optica, 2020, 7(9): 1171-1172. [21] JOO W J, KYOUNG J, ESFANDYARPOUR M, et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch[J]. Science, 2020, 370(6515): 459-463. [22] KO J H, YOO Y J, KIM Y J, et al. Flexible, large-area covert polarization display based on ultrathin lossy nanocolumns on a metal film[J]. Advanced Functional Materials, 2020, 30(11): 1908592. [23] DUAN H G. Printing color at the optical diffraction limit using plasmonics[C]. Asia Communications & Photonics Conference, 2012. [24] LEE Y, PARK M-K, KIM S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 2017, 4(8): 1954-66. [25] NAGASAKI Y, SUZUKI M, HOTTA I, et al. Control of Si-based all-dielectric printing color through oxidation[J]. ACS Photonics, 2018, 5(4): 1460-1466. [26] SHAH Y D, CONNOLLY P W R, GRANT J P, et al. Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters[J]. Optica, 2020, 7(6): 632. [27] SONG H Y, MA Y G, HAN Y B, et al. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments[J]. Advanced Theory and Simulations, 2021, 4(3): 2000299. [28] SUN S, YANG W, ZHANG C, et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J]. ACS Nano, 2018, 12(3): 2151-2159. [29] WEI Q, SAIN B, WANG Y, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, 2019, 19(12): 8964-8971. [30] WU Y K, YANG W H, FAN Y B, et al. TiO2 metasurfaces: from visible planar photonics to photochemistry[J]. Science Advances, 2019, 5(11): eaax0939. DOI:10.1126/sciadv.aax0939. [31] ZANG X F, DONG F L, YUE F Y, et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 2018, 30(21): 1707499. [32] ZHANG C, JING J, WU Y, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418-1426. [33] ZHANG F, PU M B, GAO P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Advanced Science, 2020, 7(10): 1903156. [34] HEGEDUS Z, NETTERFIELD R. Low sideband guided-mode resonant filter[J]. Applied Optics, 2000, 39(10): 1469-1473. [35] KAZANSKIY N L, SERAFIMOVICH P G, KHONINA S N. Harnessing the guided-mode resonance to design nanooptical transmission spectral filters[J]. Optical Memory and Neural Networks, 2010, 19(4): 318-324. [36] MIZUTANI A, KIKUTA H, NAKAJIMA K, et al. Nonpolarizing guided-mode resonant grating filter for oblique incidence[J]. Josa A, 2001, 18(6): 1261-1266. [37] QIAN L Y, ZHANG D W, TAO C X, et al. Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching[J]. Optics Letters, 2016, 41(5): 982-985. [38] UDDIN M J, KHALEQUE T, MAGNUSSON R. Guided-mode resonant polarization-controlled tunable color filters[J]. Optics Express, 2014, 22(10): 12307-12315. [39] WANG C T, HOU H H, CHANG P C, et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating[J]. Optics Express, 2016, 24(20): 22892. [40] WANG D Y, WANG Q K, WU M T. Spectral characteristics of a guided mode resonant filter with planes of incidence[J]. Applied Optics, 2018, 57(27): 7793-7797. [41] WANG S S, MAGNUSSON R. Theory and applications of guided-mode resonance filters[J]. Applied Optics, 1993, 32(14): 2606-2613. [42] WANG S S, MAGNUSSON R, BAGBY J S, et al. Guided-mode resonances in planar dielectric-layer diffraction gratings[J]. Josa A, 1990, 7(8): 1470-1474. [43] CLAUSEN J S, HØJLUND-NIELSEN E, CHRISTIANSEN A B, et al. Plasmonic metasurfaces for coloration of plastic consumer products[J]. Nano Letters, 2014, 14(8): 4499-4504. [44] ZHANG J X, ZHANG L D, XU W. Surface plasmon polaritons: physics and applications[J]. Journal of Physics D: Applied Physics, 2012, 45(11): 113001. [45] MAYER K M, HAFNER J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857. [46] RICARD D, ROUSSIGNOL P, FLYTZANIS C. Surface-mediated enhancement of optical phase conjugation in metal colloids[J]. Optics Letters, 1985, 10(10): 511-513. [47] ROBERTS A S, PORS A, ALBREKTSEN O, et al. Subwavelength plasmonic color printing protected for ambient use[J]. Nano Letters, 2014, 14(2): 783-787. [48] SHRESTHA V R, LEE S S, KIM E S, et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array[J]. Nano Letters, 2014, 14(11): 6672-6678. [49] WANG H, WANG X L, YAN C, et al. Full color generation using silver tandem nanodisks[J]. ACS Nano, 2017, 11(5): 4419-4427. [50] WU Y K R, HOLLOWELL A E, ZHANG C, et al. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit[J]. Scientific Reports, 2013, 3: 1194. [51] ZENG B B, GAO Y K, BARTOLI F J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters[J]. Scientific Reparts, 2014: STu1M.6. [52] CHENG F, GAO J, LUK T S, et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption[J]. Scientific Reports, 2015, 5: 11045. [53] GOUESBET G, GRÉHAN G. Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion[J]. Journal of Modern Optics, 2000, 47(5): 821-837. [54] LIU H, YANG H, LI Y R, et al. Switchable all-dielectric metasurfaces for full-color reflective display[J]. Advanced Optical Materials, 2019, 7(8): 1801639. [55] MACKOWSKI D. The extension of Mie theory to multiple spheres[M]//The Mie Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 223-256. [56] NAGASAKI Y, SUZUKI M, TAKAHARA J. All-dielectric dual-color pixel with subwavelength resolution[J]. Nano Letters, 2017, 17(12): 7500-7506. [57] PARK C S, SHRESTHA V R, YUE W J, et al. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks[J]. Scientific Reports, 2017, 7: 2556. [58] PROUST J, BEDU F, GALLAS B, et al. All-dielectric colored metasurfaces with silicon Mie resonators[J]. ACS Nano, 2016, 10(8): 7761-7767. [59] SUN S, ZHOU Z, ZHANG C, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445-4452. [60] YANG B, LIU W W, LI Z C, et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 2018, 6(4): 1701009. [61] YANG W H, XIAO S M, SONG Q H, et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 2020, 11: 1864. [62] ZHU X L, YAN W, LEVY U, et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces[J]. Science Advances, 2017, 3(5): e1602487. [63] GHOBADI A, HAJIAN H, SOYDAN M C, et al. Lithography-free planar band-pass reflective color filter using A series connection of cavities[J]. Scientific Reports, 2019, 9: 290. [64] DE SOUZA I L G, RODRIGUEZ-ESQUERRE V F. Design of planar and wideangle resonant color absorbers for applications in the visible spectrum[J]. Scientific Reports, 2019, 9: 7045. [65] JI C G, LEE K T, JAY GUO L. High-color-purity, angle-invariant, and bidirectional structural colors based on higher-order resonances[J]. Optics Letters, 2019, 44(1): 86-89. [66] KIM Y, SON J, SHAFIAN S, et al. Semitransparent blue, green, and red organic solar cells using color filtering electrodes[J]. Advanced Optical Materials, 2018, 6(13): 1800051. [67] LEE J Y, LEE K T, SEO S, et al. Decorative power generating panels creating angle insensitive transmissive colors[J]. Scientific Reports, 2014, 4: 4192. [68] LEE K T, HAN S Y, LI Z J, et al. Flexible high-color-purity structural color filters based on a higher-order optical resonance suppression[J]. Scientific Reports, 2019, 9: 14917. [69] LEE K T, KANG D, PARK H, et al. Design of polarization-independent and wide-angle broadband absorbers for highly efficient reflective structural color filters[J]. Materials, 2019, 12(7): 1050. [70] LI Z Y, BUTUN S, AYDIN K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films[J]. ACS Photonics, 2015, 2(2): 183-188. [71] LIN Z H, LONG Y X, ZHU X P, et al. Extending the color of ultra-thin gold films to blue region via Fabry-Pérot-cavity-resonance-enhanced reflection[J]. Optik, 2019, 178: 992-998. [72] LIU F, SHI H M, ZHU X P, et al. Tunable reflective color filters based on asymmetric Fabry-Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber[J]. Applied Optics, 2018, 57(30): 9040. [73] MAO K N, SHEN W D, YANG C Y, et al. Angle insensitive color filters in transmission covering the visible region[J]. Scientific Reports, 2016, 6: 19289. [74] WANG Y S, ZHU X P, CHEN Y Q, et al. Fabrication of Fabry-Perot-cavity-based monolithic full-color filter arrays using a template-confined micro-reflow process[J]. Journal of Micromechanics and Microengineering, 2019, 29(2): 025008. [75] WEI C W, ABEDINI DERESHGI S, SONG X L, et al. Polarization reflector/color filter at visible frequencies via anisotropic α-MoO3[J]. Advanced Optical Materials, 2020, 8(11): 2000088. [76] YANG Z, CHEN Y, ZHOU Y, et al. Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities[J]. Advanced Optical Materials, 2017, 5(10): 1700029. [77] ZHOU J, GUO L J. Transition from a color filter to a polarizer of a metallic nano-slit array[C]//2013 IEEE Photonics Conference. September 8-12, 2013, Bellevue, WA, USA. IEEE, 2013: 180-181. [78] YANG C Y, MAO K N, SHEN W D, et al. Tunable, omnidirectional structural color on reflection based on metal-SiOx-metal structure[J]. Applied Physics Letters, 2016, 109(24): 241104. [79] PARK C S, SHRESTHA V R, LEE S S, et al. Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay[J]. Scientific Reports, 2015, 5: 8467. [80] KATS M A, BLANCHARD R, GENEVET P, et al. Nanometre optical coatings based on strong interference effects in highly absorbing media[J]. Nature Materials, 2013, 12(1): 20-24. [81] LEE K T, SEO S, LEE J Y, et al. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters[J]. Applied Physics Letters, 2014, 104(23): 231112. [82] LEE K T, SEO S, LEE J Y, et al. Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters[J]. Advanced Materials, 2014, 26(36): 6324-6328. [83] YANG Z M, JI C G, LIU D, et al. Enhancing the purity of reflective structural colors with ultrathin bilayer media as effective ideal absorbers[J]. Advanced Optical Materials, 2019, 7(21): 1900739. [84] LIU F, SHI H M, ZHU X P, et al. Tunable reflective color filters based on asymmetric Fabry-Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber[J]. Applied Optics, 2018, 57(30): 9040-9045. [85] YANG Z M, ZHOU Y M, CHEN Y Q, et al. Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber[J]. Advanced Optical Materials, 2016, 4(8): 1196-1202. [86] LEE K T, JI C G, BANERJEE D, et al. Angular- and polarization-independent structural colors based on 1D photonic crystals[J]. Laser & Photonics Reviews, 2015, 9(3): 354-362. [87] JI C G, YANG C Y, SHEN W D, et al. Decorative near-infrared transmission filters featuring high-efficiency and angular-insensitivity employing 1D photonic crystals[J]. Nano Research, 2019, 12(3): 543-548. [88] BU Y, BU X M, LYU F C, et al. Full-color reflective filters in a large area with a wide-band tunable absorber deposited by one-step magnetron sputtering[J]. Advanced Optical Materials, 2020, 8(1): 1901626. [89] YANG Z M, JI C G, CUI Q Y, et al. High-purity hybrid structural colors by enhancing optical absorption of organic dyes in resonant cavity[J]. Advanced Optical Materials, 2020, 8(12): 2000317. [90] JI C, ACHARYA S, YAMADA K, et al. Electrodeposition of large area, angle-insensitive multilayered structural colors[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 29065-29071. [91] XIAO M, LI Y W, ALLEN M C, et al. Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles[J]. ACS Nano, 2015, 9(5): 5454-5460. [92] SHIM T S, KIM S H, SIM J Y, et al. Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field[J]. Advanced Materials, 2010, 22(40): 4494-4498. [93] GAO W H, RIGOUT M, OWENS H. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum[J]. Applied Surface Science, 2016, 380: 12-15. [94] HENCH L L, WEST J K. The Sol-gel process[J]. Chemical Reviews, 1990, 90(1): 33-72. [95] BRINKER C J, SCHERER G W. Sol-gel science: the physics and chemistry of sol-gel processing[M]. Pittsburgh: Academic Press, 2013. [96] LEE K T, LEE J Y, SEO S, et al. Colored ultrathin hybrid photovoltaics with high quantum efficiency[J]. Light: Science & Applications, 2014, 3(10): e215. [97] JI C G, ZHANG Z, MASUDA T, et al. Vivid-colored silicon solar panels with high efficiency and non-iridescent appearance[J]. Nanoscale Horizons, 2019, 4(4): 874-880. [98] HONG J, CHAN E, CHANG T, et al. Continuous color reflective displays using interferometric absorption[J]. Optica, 2015, 2(7): 589-597. |
[1] | 朱宇光;孙雯雯;方云团. 基于石墨烯超材料的极化控制开关[J]. 人工晶体学报, 2017, 46(5): 926-930. |
[2] | 王嘉宇;王永顺;管荷兰;方云团. 基于负折射率材料一维光子晶体可调节的频率和方向滤波器[J]. 人工晶体学报, 2011, 40(2): 400-404. |
[3] | 钟远聪;方云团. 基于普通介质无缺陷一维光子晶体高Q值多通道滤波器[J]. 人工晶体学报, 2010, 39(3): 737-740. |
[4] | 方云团;辛立民. 基于各向异性介质一维光子晶体缺陷模的偏振分束器[J]. 人工晶体学报, 2009, 38(5): 1199-1201. |
[5] | 李瑞莲. 左手材料的电磁特性[J]. 人工晶体学报, 2008, 37(2): 316-321. |
[6] | 方云团. 一维光子晶体结构参数的随机扰动对其光学特性的影响[J]. 人工晶体学报, 2008, 37(1): 243-247. |
[7] | 方云团;毕凯. 光在介电常数正弦调制的一维光子晶体中的传输[J]. 人工晶体学报, 2007, 36(1): 66-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||