[1] BLÁZQUEZ-CASTRO A, GARCÍA-CABAÑES A, CARRASCOSA M. Biological applications of ferroelectric materials[J]. Applied Physics Reviews, 2018, 5(4): 041101. [2] BAZZAN M, SADA C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2015, 2(4): 040603. [3] MINZIONI P, OSELLAME R, SADA C, et al. Roadmap for optofluidics[J]. Journal of Optics, 2017, 19(9): 093003. [4] JUBERA M, ELVIRA I, GARCÍA-CABAÑES A, et al. Trapping and patterning of biological objects using photovoltaic tweezers[J]. Applied Physics Letters, 2016, 108(2): 023703. [5] MICCIO L, MARCHESANO V, MUGNANO M, et al. Light induced DEP for immobilizing and orienting Escherichia coli bacteria[J]. Optics and Lasers in Engineering, 2016, 76: 34-39. [6] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): 1806452. [7] KENG P Y, CHEN S, DING H, et al. Micro-chemical synthesis of molecular probes on an electronic microfluidic device[J].PNAS, 2012, 109(3): 690-695. [8] LI F F, ZHANG X, GAO K F, et al. All-optical splitting of dielectric microdroplets by using a y-cut-LN-based anti-symmetrical sandwich structure[J]. Optics Express, 2019, 27(18): 25767-25776. [9] POHL H A. Some effects of nonuniform fields on dielectrics[J]. Journal of Applied Physics, 1958, 29(8): 1182-1188. [10] ZHANG C, KHOSHMANESH K, MITCHELL A, et al. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems[J]. Analyticaland Bioanalytical Chemistry, 2010, 396(1): 401-420. [11] DIMAKI M, BØGGILD P. Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study[J]. Nanotechnology, 2004, 15(8): 1095-1102. [12] MICCIO L, PATURZO M, FINIZIO A, et al. Light induced patterning of poly(dimethylsiloxane) microstructures[J]. Optics Express, 2010, 18(11): 10947-10955. [13] SCHMID S, HIEROLD C, BOISEN A. Modeling the Kelvin polarization force actuation of micro- and nanomechanical systems[J]. Journal of Applied Physics, 2010, 107(5): 054510. [14] KANG K H. How electrostatic fields change contact angle in electrowetting[J]. Langmuir, 2002, 18(26): 10318-10322. [15] JOANNY J F, DE GENNES P G. A model for contact angle hysteresis[J]. The Journal of Chemical Physics, 1984, 81(1): 552-562. [16] BRZOSKA J B, AZOUZ I B, RONDELEZ F. Silanization of solid substrates: a step toward reproducibility[J]. Langmuir, 1994, 10(11): 4367-4373. [17] QUÉRÉ D. Wetting and roughness[J]. Annual Review of Materials Research, 2008, 38(1): 71-99. [18] 杨胡坤.微流体的电渗驱动及其相关技术的研究[D].哈尔滨:哈尔滨工业大学,2008:21-26. YANG H K. Research on electrosmosis microflow pumping and related technologies[D]. Harbin: Harbin Institute of Technology, 2008: 21-26(in Chinese). [19] ZHANG X Z, WANG J Q, TANG B Q, et al. Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals[J]. Optics Express, 2009, 17(12): 9981-9988. [20] EGGERT H A, KUHNERT F Y, BUSE K, et al. Trapping of dielectric particles with light-induced space-charge fields[J]. Applied Physics Letters, 2007, 90(24): 241909. [21] ESSELING M, HOLTMANN F, WOERDEMANN M, et al. Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system[J]. Optics Express, 2010, 18(16): 17404-17411. [22] ESSELING M, ZALTRON A, SADA C, et al. Charge sensor and particle trap based on z-cut lithium niobate[J]. Applied PhysicsLetters, 2013, 103(6): 061115. [23] ARREGUI C, RAMIRO J B,ALCÁZAR Á, et al. Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment[J]. Optics Express, 2014, 22(23): 29099-29110. [24] CARRASCOSA M, GARCÍA-CABAÑES A, JUBERA M, et al. LiNbO3: a photovoltaic substrate for massive parallel manipulation and patterning of nano-objects[J]. Applied Physics Reviews, 2015, 2(4): 040605. [25] GARCÍA-CABAÑES A, BLÁZQUEZ-CASTRO A, ARIZMENDI L, et al. Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate[J]. Crystals, 2018, 8(2): 65. [26] BURGOS H, JUBERA M, VILLARROEL J, et al. Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect inLiNbO3[J]. Optical Materials, 2013, 35(9): 1700-1705. [27] SEBASTIÁN-VICENTE C, MUÑOZ-CORTÉS E, GARCÍA-CABAÑES A, et al. Real-time operation of photovoltaic optoelectronic tweezers: new strategies for massive nano-object manipulation and reconfigurable patterning[J]. Particle & Particle Systems Characterization, 2019, 36(9): 1900233. [28] MUÑOZ-MARTÍNEZ J F, ELVIRA I, JUBERA M, et al. Efficient photo-induced dielectrophoretic particle trapping on Fe∶LiNbO3 for arbitrary two dimensional patterning[J]. Optical Materials Express, 2015, 5(5): 1137-1146. [29] MUÑOZ-MARTÍNEZ J F, JUBERA M, MATARRUBIA J, et al. Diffractive optical devices produced by light-assisted trapping of nanoparticles[J]. Optics Letters, 2016, 41(2): 432. [30] SPERLING J R, NEALE S L, CLARK A W. Bridging the gap: rewritable electronics using real-time light-induced dielectrophoresis on lithium niobate[J]. Scientific Reports, 2017, 7: 9660. [31] ZAN Z T, WANG D H, LI F F, et al. Impact of the crystal orientation of LiNbO3∶Fe on the dynamic behaviors of the particles trapped through the photovoltaic tweezer[J]. Optics Communications, 2020, 457: 124727. [32] ESSELING M, ZALTRON A, HORN W, et al. Optofluidic droplet router[J]. Laser & Photonics Reviews, 2015, 9(1): 98-104. [33] CHEN L P, FAN B L, YAN W B, et al. Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure[J]. Optics Letters, 2016, 41(19): 4558-4561. [34] CHEN L P, LI S B, FAN B L, et al. Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates[J]. Scientific Reports, 2016, 6: 29166. [35] FAN B L, LI F F, CHEN L P, et al. Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate[J]. Physical Review Applied, 2017, 7(6): 064010. [36] GAO K F, ZHANG X, ZAN Z T, et al. Visible-light-assisted condensation of ultrasonically atomized water vapor on LiNbO3∶Fe crystals[J]. Optics Express, 2019, 27(26): 37680-37694. [37] ZHANG X, GAO K F, GAO Z X, et al. Photovoltaic splitting of water microdroplets on a y-cut LiNbO3∶Fe crystal coated with oil-infused hydrophobic insulating layers[J]. Optics Letters, 2020, 45(5): 1180-1183. [38] GAO Z X, MI Y H, WANG M T, et al. Hydrophobic-substrate based water-microdroplet manipulation through the long-range photovoltaic interaction from a distant LiNbO3∶Fe crystal[J]. Optics Express, 2021, 29(3): 3808-3824. [39] ZHANG X, MUGISHA E R, MI Y, et al. Photovoltaic cycling to-and-fro actuation of a water-microdroplet for automatic repeatable solute acquisition on oil-infused hydrophobic LN∶Fe surface[J]. ACS Photonics, 2021, 8(2): 639-647. [40] MUÑOZ-CORTÉS E, PUERTO A, BLÁZQUEZ-CASTRO A, et al. Optoelectronic generation of bio-aqueous femto-droplets based on the bulk photovoltaic effect[J]. Optics Letters, 2020, 45(5): 1164-1167. [41] PUERTO A, MÉNDEZ A, ARIZMENDI L, et al. Optoelectronic manipulation, trapping, splitting, and merging of water droplets and aqueous biodroplets based on the bulk photovoltaic effect[J]. Physical Review Applied, 2020, 14(2): 024046. |