[1] ZHANG B, ZHENG T, WANG Q X, et al. Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si[J]. Journal of Alloys and Compounds, 2017, 699: 1134-1139. [2] INOUE R, NAKANO J, NAKAMURA T, et al. Mechanical and thermoelectric properties of intragranular SiC-nanoparticle/Mg2Si composites[J]. Journal of Alloys and Compounds, 2019, 775: 657-666. [3] SARPI B, ZIRMI R, PUTERO M, et al. Growth, stability and decomposition of Mg2Si ultra-thin films on Si(100)[J]. Applied Surface Science, 2018, 427: 522-527. [4] KAUR K, KUMAR R. Electronic and thermoelectric properties of Al doped Mg2Si material: DFT study[J]. Materials Today: Proceedings, 2016, 3(6): 1785-1791. [5] ZHANG Y, CHU Y C, XING W, et al. Mechanical properties of thermoelectric Mg2Si using molecular dynamics simulations[J]. Mechanics of Advanced Materials and Structures, 2019, 26(8): 710-715. [6] LIAO Y F, FAN M H, XIE Q, et al. Defect-induced room-temperature visible light luminescence in Mg2Si∶Al films[J]. Applied Surface Science, 2018, 458: 360-368. [7] TOKAIRIN T, IKEDA J, UDONO H. Crystal growth of Mg2Si for IR-detector[J]. Journal of Crystal Growth, 2017, 468: 761-765. [8] GOURALNIK A S, MASLOV A M, USTINOV A Y, et al. Formation of Mg2Si at high temperatures by fast deposition of Mg on Si(111) with wedge-shaped temperature distribution[J]. Applied Surface Science, 2018, 439: 282-284. [9] LIAO Y F, XIE Q, XIAO Q Q, et al. Photoluminescence of Mg2Si films fabricated by magnetron sputtering[J]. Applied Surface Science, 2017, 403: 302-307. [10] KATAGIRI A, OGAWA S, UEHARA M, et al. Growth of (111)-oriented epitaxial magnesium silicide (Mg2Si) films on (001) Al2O3 substrates by RF magnetron sputtering and their properties[J]. Journal of Materials Science, 2018, 53(7): 5151-5158. [11] KATAGIRI A, OGAWA S, OIKAWA T, et al. Structural characterization of epitaxial Mg2Si films grown on MgO and MgO-buffered Al2O3substrates[J]. Japanese Journal of Applied Physics, 2015, 54(7S2): 07 JC01. [12] KUROKAWA M, UEHARA M, ICHINOSE D, et al. Preparation of preferentially (111)-oriented Mg2Si thin films on (001)Al2O3 and (100)CaF2 substrates and their thermoelectric properties[J]. Japanese Journal of Applied Physics, 2017, 56(5S1): 05DC02. [13] CHAN K Y, TEO B S. Sputtering power and deposition pressure effects on the electrical and structural properties of copper thin films[J]. Journal of Materials Science, 2005, 40(22): 5971-5981. [14] LI Y P, XIN Q, DU L L, et al. Extremely sensitive dependence of SnOx min film properties on sputtering power[J]. Scientific Reports, 2016, 6: 36183. [15] LANGFORD J I, WILSON A J C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size[J]. Journal of Applied Crystallography, 1978, 11(2): 102-113. [16] GAO P T, MENG L J, DOS SANTOS M P, et al. Influence of sputtering power and the substrate-target distance on the properties of ZrO2 films prepared by RF reactive sputtering[J]. Thin Solid Films, 2000, 377/378: 557-561. [17] 丛芳玲,赵青南,刘 旭,等.溅射时间对GZO薄膜光电性能的影响[J].硅酸盐通报,2016,35(12):3910-3914. CONG F L, ZHAO Q N, LIU X, et al. Effects of sputtering time on photoelectric property of GZO films[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 3910-3914(in Chinese). [18] BALEVA M, ZLATEVA G, ATANASSOV A, et al. Resonant Raman scattering in ion-beam-synthesized Mg2Si in a silicon matrix[J]. Physical Review B, 2005, 72(11): 115330. [19] TELLIER C R. A theoretical description of grain boundary electron scattering by an effective mean free path[J]. Thin Solid Films, 1978, 51(3): 311-317. [20] RAFEA M A, FARAG A A M, ROUSHDY N. Controlling the crystallite size and influence of the film thickness on the optical and electrical characteristics of nanocrystalline Cu2S films[J]. Materials Research Bulletin, 2012, 47(2): 257-266. |