[1] NGUYEN N T, TIXADOR P. A {YBCO}-coated conductor for a fault current limiter: architecture influences and optical study[J]. Superconductor Science and Technology, 2009, 23(2): 025008. [2] MALOZEMOFF A P, FLESHLER S, RUPICH M, et al. Progress in high temperature superconductor coated conductors and their applications[J]. Superconductor Science and Technology, 2008, 21(3): 034005. [3] TANAKA S. High-temperature superconductivity[J]. Japanese Journal of Applied Physics, 2006, 45(12): 9011-9024. [4] KUTAMI H, HAYASHIDA T, HANYU S, et al. Progress in research and development on long length coated conductors in Fujikura[J]. Physica C: Superconductivity, 2009, 469(15/16/17/18/19/20): 1290-1293. [5] IZUMI T, SHIOHARA Y. R&D of coated conductors for applications in Japan[J]. Physica C: Superconductivity and Its Applications, 2010, 470(20): 967-970. [6] MANABE T, YAMAGUCHI I, NAKAMURA S, et al. Crystallization and in-plane alignment behavior of YBa2Cu3O7-y films on MgO(001) prepared by the dipping-pyrolysis process[J]. Journal of Materials Research, 1995, 10(7): 1635-1643. [7] YAMAGIWA K, HIRABAYASHI I. Orientation behavior of REBa2Cu3O7-y(RE=Rare earth and Y) films prepared by chemical solution deposition[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 2A): 452-457. [8] PARMIGIANI F, CHIARELLO G, RIPAMONTI N, et al. Observation of carboxylic groups in the lattice of sintered Ba2YCu3O7-y high-Tc superconductors[J]. Physical Review B, 1987, 36(13): 7148-7150. [9] GUPTA A, JAGANNATHAN R, COOPER E I, et al. Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors[J]. Applied Physics Letters, 1988, 52(24): 2077-2079. [10] MCINTYRE P C, CIMA M J, FAI NG M, et al. Texture development in Ba2YCu3O7-x films from trifluoroacetate precursors[J]. Journal of Materials Research, 1990, 5(12): 2771-2779. [11] MCINTYRE P C, CIMA M J, SMITH J A, et al. Effect of growth conditions on the properties and morphology of chemically derived epitaxial thin films of Ba2YCu3O7-x on (001) LaAlO3[J]. Journal of Applied Physics, 1992, 71(4): 1868-1877. [12] XU Y, GOYAL A, RUTTER N A, et al. Fabrication of high-critical current density YBa2Cu3O7-δ films using a fluorine-free Sol gel approach[J]. Journal of Materials Research, 2003, 18(3): 677-681. [13] GLOWACKI B A, MOSIADZ M. The role of Sol gel processing in the development of high-temperature superconductors for AC applications[J]. Journal of Sol-Gel Science and Technology, 2009, 51(3): 335-347. [14] SCHOOFS B, VAN DE VYVER D, VERMEIR P, et al. Characterisation of the sol-gel process in the superconducting NdBa2Cu3O7-y system[J]. J Mater Chem, 2007, 17(17): 1714-1724. [15] SCHOOFS B, MOUGANIE T, GLOWACKI B A, et al. Synthesis of highly textured superconducting NdBa2Cu3O7-y thin films by two aqueous Sol-gel dip coating techniques[J]. Journal of Sol-Gel Science and Technology, 2007, 41(2): 113-122. [16] VERMEIR P, CARDINAEL I, BÄCKER M, et al. Fluorine-free water-based sol-gel deposition of highly epitaxial YBa2Cu3O7-δ films[J]. Superconductor Science and Technology, 2009, 22(7): 075009. [17] PUIG T, GONZÁLEZ J C, POMAR A, et al. The influence of growth conditions on the microstructure and critical currents of TFA-MOD YBa2Cu3O7 films[J]. Superconductor Science and Technology, 2005, 18(8): 1141-1150. [18] CHEN H, ZALAMOVA K, POMAR A, et al. Nucleation and growth rate influence on microstructure and critical currents of TFA-YBa2Cu3O7 under low-pressure conditions[J]. Journal of Materials Research, 2010, 25(12): 2371-2379. [19] CHEN Y, YAN F, ZHAO G, et al. Fluorine-free sol-gel preparation of YBa2Cu3O7-x superconducting films by a direct annealing process[J]. Journal of Alloys and Compounds, 2010, 505(2): 640-644. [20] GYORGY E M, VAN DOVER R B, JACKSON K A, et al. Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model[J]. Applied Physics Letters, 1989, 55(3): 283-285. [21] HAMMOND R H, BORMANN R. Correlation between the in situ growth conditions of YBCO thin films and the thermodynamic stability criteria[J]. Physica C: Superconductivity and Its Applications, 1989, 162/163/164: 703-704. [22] XU Y, GOYAL A, LEONARD K J, et al. Processing dependence of texture, and critical properties of YBa2Cu3O7-δ films on RABiTS substrates by a non-fluorine MOD method[J]. Journal of the American Ceramic Society, 2006, 89(3): 914-920. [23] FEENSTRA R, LINDEMER T B, BUDAI J D, et al. Effect of oxygen pressure on the synthesis of YBa2Cu3O7-x thin films by post-deposition annealing[J]. Journal of Applied Physics, 1991, 69(9): 6569-6585. [24] FELDMANN D M, LARBALESTIER D C, VEREBELYI D T, et al. Inter- and intragrain transport measurements in YBa2Cu3O7-x deformation textured coated conductors[J]. Applied Physics Letters, 2001, 79(24): 3998-4000. [25] PAN V M, KASATKIN A L, FLIS V S, et al. Vortex pinning/dynamics in YBCO films with Jc(77 K)>3×106 A/cm2 studied by direct transport measurements[J]. Journal of Low Temperature Physics, 1999, 117(5/6): 1537-1541. [26] KLAASSEN F C, DOORNBOS G, HUIJBREGTSE J M, et al. Vortex pinning by natural linear defects in thin films of YBa2Cu3O7-δ[J]. Physical Review B, 2001, 64(18): 184523. [27] NAKAMURA Y E. Quantitative structure analyses of YBa2Cu3O7-delta thin films: determination of oxygen content from X-ray-diffraction patterns[J]. Physical Review B, Condensed Matter, 1993, 48(10): 7554-7564. |