人工晶体学报 ›› 2021, Vol. 50 ›› Issue (9): 1796-1809.
张道永, 王书荣
收稿日期:
2021-05-06
出版日期:
2021-09-15
发布日期:
2021-10-15
通信作者:
王书荣,博士,教授。E-mail:shrw88@aliyun.com
作者简介:
张道永(1998—),男,安徽省人。E-mail:daoyongzh@163.com
基金资助:
ZHANG Daoyong, WANG Shurong
Received:
2021-05-06
Online:
2021-09-15
Published:
2021-10-15
摘要: 低成本薄膜太阳电池在光伏领域有着很大的发展空间和应用前景,铜锌锡硫硒(Cu2ZnSn(S,Se)4,CZTSSe)薄膜太阳电池具有组成元素丰富、无毒、光吸收系数高、光学带隙合适、理论光电转换效率高和稳定性好等优点,是一种具有大规模应用潜力的新型薄膜太阳电池。本文将对铜锌锡硫硒薄膜太阳电池的发展、制备方法和研究现状进行介绍,并对报道过的铜锌锡硫硒薄膜太阳电池进行对比分析,概括目前铜锌锡硫硒薄膜太阳电池的成果及现状,最后阐明目前铜锌锡硫硒薄膜太阳电池所存在的问题并对其未来进行展望。
中图分类号:
张道永, 王书荣. 铜锌锡硫硒薄膜太阳电池研究进展[J]. 人工晶体学报, 2021, 50(9): 1796-1809.
ZHANG Daoyong, WANG Shurong. Research Progress of Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Journal of Synthetic Crystals, 2021, 50(9): 1796-1809.
[1] 敖建平.CIGS薄膜太阳电池产业化的最新进展及发展趋势[J].人工晶体学报,2012,41(S1):189-195. AO J P. Recent progress and trends in industrialization of CIGS film solar cells[J]. Journal of Synthetic Crystals, 2012, 41(S1): 189-195(in Chinese). [2] LEE T D, EBONG A U. A review of thin film solar cell technologies and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1286-1297. [3] SONG J H, YOON J, AN Y S, et al. Power performance characteristics of transparent thin-film BIPV module depending on an installation angle[J]. Journal of the Korean Solar Energy Society, 2008: 28. [4] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. [5] SPALATU N, KRUNKS M, HIIE J. Structural and optoelectronic properties of CdCl2 activated CdTe thin films modified by multiple thermal annealing[J]. Thin Solid Films, 2017, 633: 106-111. [6] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867. [7] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593. [8] NITSCHE R, SARGENT D F, WILD P. Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport[J]. Journal of Crystal Growth, 1967, 1(1): 52-53. [9] SON D H, KIM S H, KIM S Y, et al. Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device[J]. Journal of Materials Chemistry A, 2019, 7(44): 25279-25289. [10] WALSH A, CHEN S Y, WEI S H, et al. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4[J]. Advanced Energy Materials, 2012, 2(4): 400-409. [11] SHIN D, SAPAROV B, MITZI D B. Photovoltaic materials: defect engineering in multinary earth-abundant chalcogenide photovoltaic materials[J]. Advanced Energy Materials, 2017, 7(11): 1602366. [12] CHEN S Y, WALSH A, YANG J H, et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells[J]. Physical Review B, 2011, 83(12): 125201. [13] ITO K, NAKAZAWA T. Electrical and optical properties of stannite-type quaternary semiconductor thin films[J]. Japanese Journal of Applied Physics, 1988, 27(Part 1, No. 11): 2094-2097. [14] POLIZZOTTI A, REPINS I L, NOUFI R, et al. The state and future prospects of kesterite photovoltaics[J]. Energy & Environmental Science, 2013, 6(11): 3171. [15] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. [16] PRABHAKAR T, JAMPANA N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films[J]. Solar Energy Materials and Solar Cells, 2011, 95(3): 1001-1004. [17] NISHIWAKI S, KOHARA N, NEGAMI T, et al. Characterization of Cu(In, Ga)Se2/Mo interface In CIGS solar cells[J]. MRS Online Proceedings Library, 1997, 485(1): 139-144. [18] ORGASSA K, SCHOCK H W, WERNER J H. Alternative back contact materials for thin film Cu(In, Ga)Se2 solar cells[J]. Thin Solid Films, 2003, 431/432: 387-391. [19] 宋燕平.铜锌锡硫硒太阳能电池的界面钝化改性及其光电性能研究[D].长春:吉林大学,2020. SONG Y P. Investigation on the interface passivation modification for the efficient Cu2Zn Sn(S, Se)4 solar cells[D]. Changchun: Jilin University, 2020(in Chinese). [20] KATAGIRI H, JIMBO K, MAW W S, et al. Development of CZTS-based thin film solar cells[J]. Thin Solid Films, 2009, 517(7): 2455-2460. [21] KATAGIRI H, JIMBO K, MORIYA K, et al. Solar cell without environmental pollution by using CZTS thin film[C]//3rd World Conference on Photovoltaic Energy Conversion, 2003. Proceedings of. May 11-18, 2003, Osaka, Japan. IEEE, 2003: 2874-2879. [22] REPINS I, BEALL C, VORA N, et al. Co-evaporated Cu2ZnSnSe4 films and devices[J]. Solar Energy Materials and Solar Cells, 2012, 101: 154-159. [23] LEE Y S, GERSHON T, GUNAWAN O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Advanced Energy Materials, 2015, 5(7): 1401372. [24] HWANG D K, KO B S, JEON D H, et al. Single-step sulfo-selenization method for achieving low open circuit voltage deficit with band gap front-graded Cu2ZnSn(S, Se)4 thin films[J]. Solar Energy Materials and Solar Cells, 2017, 161: 162-169. [25] CHALAPATHY R B V, JUNG G S, AHN B T. Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(12): 3216-3221. [26] LECHNER R, JOST S, PALM J, et al. Cu2ZnSn(S, Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors[J]. Thin Solid Films, 2013, 535: 5-9. [27] MÁRQUEZ J, NEUSCHITZER M, DIMITRIEVSKA M, et al. Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 144: 579-585. [28] CHAWLA V, CLEMENS B. Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets[C]//2012 38th IEEE Photovoltaic Specialists Conference. June 3-8, 2012, Austin, TX, USA. IEEE, 2012: 2990-2992. [29] LI J J, WANG H X, LUO M, et al. 10% Efficiency Cu2ZnSn(S, Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width[J]. Solar Energy Materials and Solar Cells, 2016, 149: 242-249. [30] YAN C, HUANG J L, SUN K W, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy, 2018, 3(9): 764-772. [31] LI J, HUANG Y, HUANG J, et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(52): e2005268. [32] HIROI H, SAKAI N, IWATA Y, et al. Impact of buffer layer on kesterite solar cells[C]//2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). June 14-19, 2015, New Orleans, LA, USA. IEEE, 2015: 1-4. [33] ESPINDOLA-RODRIGUEZ M, SANCHEZ Y, LÓPEZ-MARINO S, et al. Selenization of Cu2ZnSnS4 thin films obtained by pneumatic spray pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 45-51. [34] FRANCKEVIČIUS M, PAKTAS V, GRINCIEN G, et al. Efficiency improvement of superstrate CZTSSe solar cells processed by spray pyrolysis approach[J]. Solar Energy, 2019, 185: 283-289. [35] ENKHBAT T, KIM S, KIM J. Device characteristics of band gap tailored 10.04% efficient CZTSSe solar cells sprayed from water-based solution[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36735-36741. [36] SCRAGG J J, DALE P J, PETER L M, et al. New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material[J]. Physica Status Solidi (b), 2008, 245(9): 1772-1778. [37] SCRAGG J J, BERG D M, DALE P J. A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers[J]. Journal of Electroanalytical Chemistry, 2010, 646(1/2): 52-59. [38] CHEON K B, HWANG S K, SEO S W, et al. Roughness-controlled Cu2ZnSn(S, Se)4 thin-film solar cells with reduced charge recombination[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24088-24095. [39] SEO S W, JEON J O, SEO J W, et al. Compositional and interfacial modification of Cu2ZnSn(S, Se)4 thin-film solar cells prepared by electrochemical deposition[J]. ChemSusChem, 2016, 9(5): 439-444. [40] TODOROV T K, REUTER K B, MITZI D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(20): E156-E159. [41] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465. [42] 于 晴.高质量铜锌锡硫硒薄膜的溶液法制备及光伏器件性能研究[D].北京:中国科学院大学(中国科学院物理研究所),2020. YU Q. Preparation of high quality Cu2ZnSn(S, Se)4 film by solution method and study of the photovoltaic device performance[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2020(in Chinese). [43] LUAN H M, YAO B, LI Y F, et al. Influencing mechanism of cationic ratios on efficiency of Cu2ZnSn(S, Se)4 solar cells fabricated with DMF-based solution approach[J]. Solar Energy Materials and Solar Cells, 2019, 195: 55-62. [44] HAASS S G, DIETHELM M, WERNER M, et al. 11.2% efficient solution processed kesterite solar cell with a low voltage deficit[J]. Advanced Energy Materials, 2015, 5(18): 1500712. [45] GONG Y C, ZHANG Y F, ZHU Q, et al. Identifying the origin of the Voc deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution[J]. Energy & Environmental Science, 2021, 14(4): 2369-2380. [46] WU S H, HUANG K T, CHEN H J, et al. Cu2ZnSn(SxSe1-x)4 thin film solar cell with high sulfur content (x approximately 0.4) and low Voc deficit prepared using a postsulfurization process[J]. Solar Energy Materials and Solar Cells, 2018, 175: 89-95. [47] ZHAO X Y, PAN Y N, ZUO C T, et al. Ambient air-processed Cu2ZnSn(S, Se)4 solar cells with over 12% efficiency[J]. Science Bulletin, 2021, 66(9): 880-883. [48] GUO L B, SHI J J, YU Q, et al. Coordination engineering of Cu-Zn-Sn-S aqueous precursor for efficient kesterite solar cells[J]. Science Bulletin, 2020, 65(9): 738-746. [49] MIN X, GUO L B, YU Q, et al. Enhancing back interfacial contact by in situ prepared MoO3 thin layer for Cu2ZnSnSxSe4-x solar cells[J]. Science China Materials, 2019, 62(6): 797-802. [50] WERNER M, SUTTER-FELLA C M, HAGENDORFER H, et al. Cu2ZnSn(S, Se)4 solar cell absorbers processed from Na-containing solutions in DMSO[J]. Physica Status Solidi (a), 2015, 212(1): 116-120. [51] XIN H, VORPAHL S M, COLLORD A D, et al. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S, Se)4 and increases photovoltaic efficiency[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 23859-23866. [52] TAI K F, FU D C, CHIAM S Y, et al. Antimony doping in solution-processed Cu2ZnSn(S, Se)4 solar cells[J]. ChemSusChem, 2015, 8(20): 3504-3511. [53] GONG Y C, ZHANG Y F, JEDLICKA E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V[J]. Science China Materials, 2021, 64(1): 52-60. [54] CHEN S Y, GONG X G, WALSH A, et al. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of Ⅱ-Ⅵ and Ⅰ-Ⅲ-Ⅵ2 compounds[J]. Physical Review B, 2009, 79(16): 165211. [55] COLLORD A D, HILLHOUSE H W. Germanium alloyed kesterite solar cells with low voltage deficits[J]. Chemistry of Materials, 2016, 28(7): 2067-2073. [56] HADKE S, LEVCENKO S, SAI GAUTAM G, et al. Suppressed deep traps and bandgap fluctuations in Cu2CdSnS4 solar cells with ≈8% efficiency[J]. Advanced Energy Materials, 2019, 9(45): 1902509. [57] GOKMEN T, GUNAWAN O, TODOROV T K, et al. Band tailing and efficiency limitation in kesterite solar cells[J]. Applied Physics Letters, 2013, 103(10): 103506. [58] HAGES C J, KOEPER M J, AGRAWAL R. Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying[J]. Solar Energy Materials and Solar Cells, 2016, 145: 342-348. [59] SUN R J, ZHUANG D M, ZHAO M, et al. Beyond 11% efficient Cu2ZnSn(Se, S)4 thin film solar cells by cadmium alloying[J]. Solar Energy Materials and Solar Cells, 2018, 174: 494-498. [60] SU Z H, TAN J M R, LI X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Advanced Energy Materials, 2015, 5(19): 1500682. [61] HE M R, ZHANG X, HUANG J L, et al. High efficiency Cu2ZnSn(S, Se)4 solar cells with shallow LiZn acceptor defects enabled by solution-based Li post-deposition treatment[J]. Advanced Energy Materials, 2021, 11(13): 2003783. [62] DU Y C, WANG S S, TIAN Q W, et al. Defect engineering in earth-abundant Cu2 ZnSn(S, Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells[J]. Advanced Functional Materials, 2021, 31(16): 2010325. [63] YANG K J, SIM J H, SON D H, et al. Comparison of chalcopyrite and kesterite thin-film solar cells[J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 78-84. [64] LEE Y S, GERSHON T, TODOROV T K, et al. Atomic layer deposited aluminum oxide for interface passivation of Cu2ZnSn(S, Se)4Thin-film solar cells[J]. Advanced Energy Materials, 2016, 6(12): 1600198. [65] YANG K J, SON D H, SUNG S J, et al. A band-gap-graded CZTSSe solar cell with 12.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(26): 10151-10158. [66] QI Y F, KOU D X, ZHOU W H, et al. Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu, Ag)2ZnSn(S, Se)4 solar cells[J]. Energy & Environmental Science, 2017, 10(11): 2401-2410. [67] REY G, REDINGER A, SENDLER J, et al. The band gap of Cu2ZnSnSe4: effect of order-disorder[J]. Applied Physics Letters, 2014, 105(11): 112106. [68] XIE H B, LÓPEZ-MARINO S, OLAR T, et al. Impact of Na dynamics at the Cu2ZnSn(S, Se)4/CdS interface during post low temperature treatment of absorbers[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 5017-5024. [69] SARDASHTI K, HAIGHT R, GOKMEN T, et al. Impact of nanoscale elemental distribution in high-performance kesterite solar cells[J]. Advanced Energy Materials, 2015, 5(10): 1402180. [70] KRÄMMER C, HUBER C, ZIMMERMANN C, et al. Reversible order-disorder related band gap changes in Cu2ZnSn(S, Se)4 via post-annealing of solar cells measured by electroreflectance[J]. Applied Physics Letters, 2014, 105(26): 262104. [71] SCRAGG J J S, CHOUBRAC L, LAFOND A, et al. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films[J]. Applied Physics Letters, 2014, 104(4): 041911. [72] SCRAGG J J S, LARSEN J K, KUMAR M, et al. Cu-Zn disorder and band gap fluctuations in Cu2ZnSn(S, Se)4: theoretical and experimental investigations[J]. Physica Status Solidi (b), 2016, 253(2): 247-254. [73] NEUSCHITZER M, SANCHEZ Y, OLAR T, et al. Complex surface chemistry of kesterites: Cu/Zn reordering after low temperature postdeposition annealing and its role in high performance devices[J]. Chemistry of Materials, 2015, 27(15): 5279-5287. [74] TAJIMA S, ASAHI R, ISHEIM D, et al. Atom-probe tomographic study of interfaces of Cu2ZnSnS4 photovoltaic cells[J]. Applied Physics Letters, 2014, 105(9): 093901. [75] TAJIMA S, UMEHARA M, HASEGAWA M, et al. Cu2ZnSnS4 photovoltaic cell with improved efficiency fabricated by high-temperature annealing after CdS buffer-layer deposition[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(1): 14-22. [76] GAO S S, ZHANG Y, AO J P, et al. Insight into the role of post-annealing in air for high efficient Cu2ZnSn(S, Se)4 solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 182: 228-236. [77] TEETER G, HARVEY S P, JOHNSTON S. Controlling metastable native point-defect populations in Cu(In, Ga)Se2 and Cu2ZnSnSe4 materials and solar cells through voltage-bias annealing[J]. Journal of Applied Physics, 2017, 121(4): 043102. [78] DIMITRIEVSKA M, GIRALDO S, PISTOR P, et al. Raman scattering analysis of the surface chemistry of kesterites: impact of post-deposition annealing and Cu/Zn reordering on solar cell performance[J]. Solar Energy Materials and Solar Cells, 2016, 157: 462-467. [79] SU Z, LIANG G, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(32): e2000121. |
[1] | 王治强, 张齐, 梁颖, 王文欣, 陈琦. 磁场辅助法快捷制备Fe3O4@C光子晶体柔性复合薄膜[J]. 人工晶体学报, 2025, 54(1): 49-58. |
[2] | 吴蕊, 胡洋, 唐荣芬, 阳倩, 王序, 吴怡逸, 聂登攀, 王环江. MOCVD生长ZnO薄膜的气相寄生反应路径研究[J]. 人工晶体学报, 2024, 53(9): 1608-1619. |
[3] | 程友良, 杜慧彬, 张忠宝, 王凯. 二氧化锡基染料敏化太阳能电池电子传输模型优化及器件性能研究[J]. 人工晶体学报, 2024, 53(9): 1629-1639. |
[4] | 赵娅, 庄众, 魏梦园, 蒋青松, 杨潇, 荀威, 刘雨昊. 富硫前驱体溶液对CuPbSbS3太阳能电池光伏性能的影响研究[J]. 人工晶体学报, 2024, 53(9): 1640-1647. |
[5] | 钟琼丽, 王绪, 马奎, 杨发顺. Al掺杂对β-Ga2O3薄膜光学性质的影响研究[J]. 人工晶体学报, 2024, 53(8): 1352-1360. |
[6] | 李昊晴, 苏煜. BaTiO3纳米单晶薄膜在外加电场作用下畴结构演化的相场研究[J]. 人工晶体学报, 2024, 53(7): 1136-1149. |
[7] | 杨涛, 陈彩明, 黄瑜佳, 吴少平, 徐华蕊, 汪坤喆, 朱归胜. ITO/AgNWs/ITO薄膜的制备及其性能研究[J]. 人工晶体学报, 2024, 53(7): 1150-1159. |
[8] | 丁涛, 李晴雯, 徐玉琦, 钟敏. 硫属钙钛矿BaZrS3及其制备的研究进展和展望[J]. 人工晶体学报, 2024, 53(6): 922-929. |
[9] | 代同光, 谭新, 宋志成, 郭永刚, 袁雅静, 倪玉凤, 汪梁. TOPCon太阳电池单面沉积Poly-Si的工艺研究[J]. 人工晶体学报, 2024, 53(5): 818-823. |
[10] | 张庆文, 单东明, 张虎, 丁然. 溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展[J]. 人工晶体学报, 2024, 53(4): 572-584. |
[11] | 刘宏德, 王维维, 张中正, 郑大怀, 刘士国, 孔勇发, 许京军. 铌酸锂晶体的缺陷结构[J]. 人工晶体学报, 2024, 53(3): 355-371. |
[12] | 林锦添, 高仁宏, 管江林, 黎春桃, 姚妮, 程亚. 低损耗薄膜铌酸锂光集成器件的研究进展[J]. 人工晶体学报, 2024, 53(3): 372-394. |
[13] | 张煜晨, 李三兵, 许京军, 张国权. 铌酸锂导电畴壁及其应用[J]. 人工晶体学报, 2024, 53(3): 395-409. |
[14] | 叶志霖, 李世凤, 崔国新, 尹志军, 王学斌, 赵刚, 胡小鹏, 祝世宁. 晶圆级薄膜铌酸锂波导制备工艺与性能表征[J]. 人工晶体学报, 2024, 53(3): 426-433. |
[15] | 何雨轩, 吴江威, 陈玉萍, 陈险峰. 适温离子交换掺铒铌酸锂薄膜的制备研究[J]. 人工晶体学报, 2024, 53(3): 441-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||