[1] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. [2] LI N, XU F, QIU Z W, et al. Sealing the domain boundaries and defects passivation by poly(acrylic acid) for scalable blading of efficient perovskite solar cells[J]. Journal of Power Sources, 2019, 426: 188-196. [3] KOSCHER B A, SWABECK J K, BRONSTEIN N D, et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment[J]. Journal of the American Chemical Society, 2017, 139(19): 6566-6569. [4] SU Y, CHEN X J, JI W Y, et al. Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X=Cl, Br, I) perovskite QDs toward the tunability of entire visible light[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33020-33028. [5] HAMATANI T, SHIRAHATA Y, OHISHI Y, et al. Arsenic and chlorine co-doping to CH3NH3PbI3 perovskite solar cells[J]. Advances in Materials Physics and Chemistry, 2017, 7(1): 1-10. [6] XINGLIN Z, XINYU Z, LEI L, et al. Perovskite self-passivation with PCBM for small open-circuit voltage loss[J]. Energy and Power Engineering, 2020(6): 257-272. [7] LEE S J, CHOI J W, KUMAR S, et al. Preparation of perovskite-embedded monodisperse copolymer particles and their application for high purity down-conversion LEDs[J]. Materials Horizons, 2018, 5(6): 1120-1129. [8] LI Y, SHI Z F, LEI L Z, et al. Controllable vapor-phase growth of inorganic perovskite microwire networks for high-efficiency and temperature-stable photodetectors[J]. ACS Photonics, 2018, 5(6): 2524-2532. [9] ZOU T Y, LIU X Y, QIU R Z, et al. Enhanced UV-C detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot down-conversion layer[J]. Advanced Optical Materials, 2019, 7(11): 1801812. [10] TANG X S, ZU Z Q, SHAO H B, et al. All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application[J]. Nanoscale, 2016, 8(33): 15158-15161. [11] NIU G D, LI W Z, LI J W, et al. Progress of interface engineering in perovskite solar cells[J]. Science China Materials, 2016, 59(9): 728-742. [12] PAN J, SHANG Y Q, YIN J, et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. Journal of the American Chemical Society, 2018, 140(2): 562-565. [13] HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: synthesis and applications[J]. Chemical Science, 2017, 8(4): 2522-2536. [14] ZHANG F, ZHONG H Z, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542. [15] DU X F, WU G, CHENG J, et al. High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes[J]. RSC Advances, 2017, 7(17): 10391-10396. [16] HUANG H, CHEN B K, WANG Z G, et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices[J]. Chemical Science, 2016, 7(9): 5699-5703. [17] BOUDUBAN M E F, BURGOS-CAMINAL A, OSSOLA R, et al. Energy and charge transfer cascade in methylammonium lead bromide perovskite nanoparticle aggregates[J]. Chemical Science, 2017, 8(6): 4371-4380. [18] PAN A Z, HE B, FAN X Y, et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors[J]. ACS Nano, 2016, 10(8): 7943-7954. [19] PANG X L, SI S C, XIE L Q, et al. Regulating the morphology and luminescence properties of CsPbBr3 perovskite quantum dots through the rigidity of glass network structure[J]. Journal of Materials Chemistry C, 2020, 8(48): 17374-17382. [20] DUTTA A, DUTTA S K, DAS ADHIKARI S, et al. Tuning the size of CsPbBr3 nanocrystals: all at one constant temperature[J]. ACS Energy Letters, 2018, 3(2): 329-334. [21] CHEN J S, LIU D Z, AL-MARRI M J, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application[J]. Science China Materials, 2016, 59(9): 719-727. [22] SUN Y F, ZHANG H D, ZHU K, et al. Research on the influence of polar solvents on CsPbBr3 perovskite QDs[J]. RSC Advances, 2021, 11(44): 27333-27337. [23] LI J, HU Y, ZHAO J L, et al. Temperature induces the change of CsPbBr1.5I1.5 perovskite nanocrystals and affects luminescence properties[J]. Journal of Physics D: Applied Physics, 2019, 52(50): 505113. [24] AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions[J]. Journal of the American Chemical Society, 2015, 137(32): 10276-10281. [25] YANG D D, LI X M, ZENG H B. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability[J]. Advanced Materials Interfaces, 2018, 5(8): 1701662. [26] WANG Q, TONG Y, YANG M T, et al. ZnO induced self-crystallization of CsPb(Br/I)3 nanocrystal glasses with improved stability for backlight display application[J]. Journal of Materials Science & Technology, 2022, 121: 140-147. [27] WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chemical Society Reviews, 2019, 48(1): 310-350. [28] XU F, KONG X B, WANG W Z, et al. Quantum size effect and surface defect passivation in size-controlled CsPbBr3 quantum dots[J]. Journal of Alloys and Compounds, 2020, 831: 154834. [29] PAPAVASSILIOU G C, PAGONA G, KAROUSIS N, et al. Nanocrystalline/microcrystalline materials based on lead-halide units[J]. Journal of Materials Chemistry, 2012, 22(17): 8271-8280. [30] PALAZON F, EL AJJOURI Y, BOLINK H J. Making by grinding: mechanochemistry boosts the development of halide perovskites and other multinary metal halides[J]. Advanced Energy Materials, 2020, 10(13): 1902499. [31] HERNÁNDEZ J G, BOLM C. Altering product selectivity by mechanochemistry[J]. The Journal of Organic Chemistry, 2017, 82(8): 4007-4019. [32] ZHANG Z J, ZHU Y M, WANG W L, et al. Growth, characterization and optoelectronic applications of pure-phase large-area CsPb2Br5 flake single crystals[J]. Journal of Materials Chemistry C, 2018, 6(3): 446-451. [33] ACHARYYA P, PAL P, SAMANTA P K, et al. Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties[J]. Nanoscale, 2019, 11(9): 4001-4007. [34] DĚCKÁ K, SUCHÁ A, KRÁL J, et al. On the role of Cs4PbBr6 phase in the luminescence performance of bright CsPbBr3 nanocrystals[J]. Nanomaterials, 2021, 11(8): 1935. [35] KANG B, BISWAS K. Exploring polaronic, excitonic structures and luminescence in Cs4PbBr6/CsPbBr3[J]. The Journal of Physical Chemistry Letters, 2018, 9(4): 830-836. [36] QUAN L N, QUINTERO-BERMUDEZ R, VOZNYY O, et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix[J]. Advanced Materials, 2017, 29(21): 1605945. [37] LI X M, WU Y, ZHANG S L, et al. Quantum dots: CsPbX3quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(15): 2584. [38] WANG L, MA D C, GUO C, et al. CsPbBr3 nanocrystals prepared by high energy ball milling in one-step and structural transformation from CsPbBr3 to CsPb2Br5[J]. Applied Surface Science, 2021, 543: 148782. [39] LIU X, LUO Z, YIN W X, et al. Methanol-induced fast CsBr release results in phase-pure CsPbBr3 perovskite nanoplatelets[J]. Nanoscale Advances, 2020, 2(5): 1973-1979. [40] LI Y X, HUANG H, XIONG Y, et al. Reversible transformation between CsPbBr3 and Cs4PbBr6 nanocrystals[J]. CrystEngComm, 2018, 20(34): 4900-4904. [41] HUYNH K A, BAE S R, NGUYEN T V, et al. Ligand-assisted sulfide surface treatment of CsPbI3 perovskite quantum dots to increase photoluminescence and recovery[J]. ACS Photonics, 2021, 8(7): 1979-1987. [42] LU H G, TANG Y, RAO L S, et al. Investigating the transformation of CsPbBr3 nanocrystals into highly stable CsPbBr3/Cs4PbBr6 nanocrystals using ethyl acetate in a microchannel reactor[J]. Nanotechnology, 2019, 30(29): 295603. [43] 陈 婷,胡泽浩,徐彦乔,等.一步法制备CsPbBr3/Cs4PbBr6复合纳米晶及其荧光性能研究[J].人工晶体学报,2020,49(2):252-258. CHEN T, HU Z H, XU Y Q, et al. One-step preparation and fluorescence properties of CsPbBr3/Cs4PbBr6 composite nanocrystals[J]. Journal of Synthetic Crystals, 2020, 49(2): 252-258(in Chinese). [44] BAO Z, TSENG Y J, YOU W W, et al. Efficient luminescence from CsPbBr3 nanoparticles embedded in Cs4PbBr6[J]. The Journal of Physical Chemistry Letters, 2020, 11(18): 7637-7642. |