人工晶体学报 ›› 2022, Vol. 51 ›› Issue (2): 344-359.
黄强, 孙兵, 徐文莉, 丛野, 陈永婷, 朱辉, 李轩科, 张琴
收稿日期:
2021-12-08
出版日期:
2022-02-15
发布日期:
2022-03-14
通讯作者:
李轩科,博士,教授。E-mail:lixuanke@wust.edu.cn;张 琴,博士,副教授。E-mail:zhangqin627@wust.edu.cn
作者简介:
黄 强(1995—),男,山东省人,硕士研究生。E-mail:huangqiang0208@sina.cn
基金资助:
HUANG Qiang, SUN Bing, XU Wenli, CONG Ye, CHEN Yongting, ZHU Hui, LI Xuanke, ZHANG Qin
Received:
2021-12-08
Online:
2022-02-15
Published:
2022-03-14
摘要: 氮化铁具有硬度高、熔点高、热导性高、耐腐蚀、安全无污染、电子导电性优异以及类铂的电子结构等优势,且其原材料资源丰富、成本低廉,在储能与电催化等众多领域中有着极大的应用前景。本文综述了铁基氮化物在结构、制备、性能和应用方面的研究进展,重点关注其制备方法和在储能领域(如锂离子电池、钠离子电池、锂硫电池)、电催化领域(如氢析出反应、氧析出反应、氧还原反应)中的应用,同时对铁基氮化物存在的主要问题进行了总结,对其未来的研究方向和应用前景进行了展望。
中图分类号:
黄强, 孙兵, 徐文莉, 丛野, 陈永婷, 朱辉, 李轩科, 张琴. 铁基氮化物在储能及电催化领域中的研究进展[J]. 人工晶体学报, 2022, 51(2): 344-359.
HUANG Qiang, SUN Bing, XU Wenli, CONG Ye, CHEN Yongting, ZHU Hui, LI Xuanke, ZHANG Qin. Research Progress of Iron-Based Nitrides for Energy Storage and Electrocatalysis[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(2): 344-359.
[1] PANG J B, MENDES R G, BACHMATIUK A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019, 48(1): 72-133. [2] ZHONG Y, XIA X H, SHI F, et al. Transition metal carbides and nitrides in energy storage and conversion[J]. Advanced Science, 2016, 3(5): 1500286. [3] POMERANTSEVA E, GOGOTSI Y. Two-dimensional heterostructures for energy storage[J]. Nature Energy, 2017, 2(7): 17089. [4] LI W, LIU J, ZHAO D Y. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1(6): 1-17. [5] WANG J Y, CUI Y, WANG D. Design of hollow nanostructures for energy storage, conversion and production[J]. Advanced Materials, 2019, 31(38): 1801993. [6] LI Z, ZHAO Z. First-principles calculations on the structures, magnetic, and electronic properties of the (Fe2N)m(m=1-4) and (Fe3N)n(n=1-3) clusters[J]. Structural Chemistry, 2020, 31(6): 2271-2280. [7] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098. [8] GIORDANO C, ANTONIETTI M. Synthesis of crystalline metal nitride and metal carbide nanostructures by sol-gel chemistry[J]. Nano Today, 2011, 6(4): 366-380. [9] RATSO S, ZITOLO A, KÄÄRIK M, et al. Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons[J]. Renewable Energy, 2021, 167: 800-810. [10] ZHANG H, GONG Q M, REN S, et al. Implication of iron nitride species to enhance the catalytic activity and stability of carbon nanotubes supported Fe catalysts for carbon-free hydrogen production via low-temperature ammonia decomposition[J]. Catalysis Science & Technology, 2018, 8(3): 907-915. [11] HUANG H, GAO S, WU A M, et al. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation[J]. Nano Energy, 2017, 31: 74-83. [12] LI Z, FANG Y J, ZHANG J T, et al. Necklace-like structures composed of Fe3N@C yolk-shell particles as an advanced anode for sodium-ion batteries[J]. Advanced Materials, 2018, 30(30): 1800525. [13] DONG Y F, WANG B L, ZHAO K N, et al. Air-stable porous Fe2 N encapsulated in carbon microboxes with high volumetric lithium storage capacity and a long cycle life[J]. Nano Letters, 2017, 17(9): 5740-5746. [14] DONG Y F, LI Y, SHI H D, et al. Graphene encapsulated iron nitrides confined in 3D carbon nanosheet frameworks for high-rate lithium ion batteries[J]. Carbon, 2020, 159: 213-220. [15] ZHU C R, SUN Y F, CHAO D L, et al. A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods[J]. Nano Energy, 2016, 26: 1-6. [16] MA X D, XIONG X H, ZENG J Q, et al. Melamine-assisted synthesis of Fe3N featuring highly reversible crystalline-phase transformation for ultrastable sodium ion storage[J]. Journal of Materials Chemistry A, 2020, 8(14): 6768-6775. [17] SCHAAF P, KAHLE M, CARPENE E. Reactive laser synthesis of carbides and nitrides[J]. Applied Surface Science, 2005, 247(1/2/3/4): 607-615. [18] YAO W T, MAKOWSKI P, GIORDANO C, et al. Synthesis of early-transition-metal carbide and nitride nanoparticles through the urea route and their use as alkylation catalysts[J]. Chemistry-A European Journal, 2009, 15(44): 11999-12004. [19] MAHMOOD A, TABASSUM H, ZHAO R, et al. Fe2N/S/N codecorated hierarchical porous carbon nanosheets for trifunctional electrocatalysis[J]. Small, 2018, 14(49): 1803500. [20] WANG L B, ZHANG K L, PAN H L, et al. 2D molybdenum nitride nanosheets as anode materials for improved lithium storage[J]. Nanoscale, 2018, 10(40): 18936-18941. [21] YU P, WANG L, SUN F F, et al. Three-dimensional Fe2N@C microspheres grown on reduced graphite oxide for lithium-ion batteries and the Li storage mechanism[J]. Chemistry - A European Journal, 2015, 21(8): 3249-3256. [22] IDREES M, MUKHTAR A, ATA-UR-REHMAN, et al. Transition metal nitride electrodes as future energy storage devices: a review[J]. Materials Today Communications, 2021, 27: 102363. [23] IDREES M, HAIDYRAH A S, ATA-UR-REHMAN, et al. Fe2N stabilized on reduced graphene oxide to enhance the performance of a lithium-ion battery composite anode[J]. Journal of Alloys and Compounds, 2021, 883: 160824. [24] JIANG H J, HUANG L, WEI Y H, et al. Bio-derived hierarchical multicore-shell Fe2N-nanoparticle-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/ potassium-ion storage[J]. Nano-Micro Letters, 2019, 11(1): 1-17. [25] ZHAO J F, WENG Y C, XU S L, et al. Protein-mediated synthesis of Fe3N nanoparticles embedded in hierarchical porous carbon for enhanced reversible lithium storage[J]. Journal of Power Sources, 2020, 464: 228246. [26] LI X L, DENG C, WANG H M, et al. Iron Nitride@C nanocubes inside core-shell fibers to realize high air-stability, ultralong life, and superior lithium/sodium storages[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7297-7307. [27] ZHANG D, LI G S, YU M J, et al. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries[J]. Journal of Power Sources, 2018, 384: 34-41. [28] SUN W W, LIU C, LI Y J, et al. Rational construction of Fe2 N@C yolk-shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries[J]. ACS Nano, 2019, 13(10): 12137-12147. [29] WANG X, WANG D S, MA C H, et al. Conductive Fe2N/N-rGO composite boosts electrochemical redox reactions in wide temperature accommodating lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 427: 131622. [30] ASLAM M K, HUSSAIN T, TABASSUM H, et al. Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode[J]. Chemical Engineering Journal, 2022, 429: 132389. [31] QI Y R, LI Q J, WU Y K, et al. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries[J]. Nature Communications, 2021, 12(1): 1-12. [32] ZHU C R, YANG P H, CHAO D L, et al. All metal nitrides solid-state asymmetric supercapacitors[J]. Advanced Materials, 2015, 27(31): 4566-4571. [33] ZHAO Z Y, ZHANG W B, MA X J, et al. A novel capacitive negative electrode material of Fe3N[J]. Nano, 2018, 13(1): 1850002. [34] WU F X, YUSHIN G. Conversion cathodes for rechargeable lithium and lithium-ion batteries[J]. Energy & Environmental Science, 2017, 10(2): 435-459. [35] GAO B, LI X X, DING K, et al. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage[J]. Journal of Materials Chemistry A, 2019, 7(1): 14-37. [36] ZHU L, CHEN Z L, SONG Y, et al. Lower ammoniation activation energy of CoN nanosheets by Mn doping with superior energy storage performance for secondary ion batteries[J]. Nanoscale, 2018, 10(12): 5581-5590. [37] BALOGUN M S, YU M H, HUANG Y C, et al. Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries[J]. Nano Energy, 2015, 11: 348-355. [38] BALOGUN M S, QIU W T, WANG W, et al. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices[J]. Journal of Materials Chemistry A, 2015, 3(4): 1364-1387. [39] DING R R, ZHANG J Z, ZHANG J, et al. Core-shell Fe2N@amorphous carbon nanocomposite-filled 3D graphene framework: an additive-free anode material for lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 360: 1063-1070. [40] LUO W, SHEN F, BOMMIER C, et al. Na-ion battery anodes: materials and electrochemistry[J]. Accounts of Chemical Research, 2016, 49(2): 231-240. [41] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. [42] LIN B, LI Q F, LIU B D, et al. Biochemistry-directed hollow porous microspheres: bottom-up self-assembled polyanion-based cathodes for sodium ion batteries[J]. Nanoscale, 2016, 8(15): 8178-8188. [43] LIU S L, LIU J, WANG W J, et al. Synthesis of coral-like Fe2N@C nanoparticles and application in sodium ion batteries as a novel anode electrode material[J]. RSC Advances, 2016, 6(89): 86131-86136. [44] ZHANG H W, ZHOU L, NOONAN O, et al. Tailoring the void size of iron oxide@carbon yolk-shell structure for optimized lithium storage[J]. Advanced Functional Materials, 2014, 24(27): 4337-4342. [45] LI G R, CHEN Z W, LU J. Lithium-sulfur batteries for commercial applications[J]. Chem, 2018, 4(1): 3-7. [46] BALACH J, LINNEMANN J, JAUMANN T, et al. Correction: metal-based nanostructured materials for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(46): 23127-23168. [47] PARK J, YU S H, SUNG Y E. Design of structural and functional nanomaterials for lithium-sulfur batteries[J]. Nano Today, 2018, 18: 35-64. [48] LUO S Q, SUN W W, KE J H, et al. A 3D conductive network of porous carbon nanoparticles interconnected with carbon nanotubes as the sulfur host for long cycle life lithium-sulfur batteries[J]. Nanoscale, 2018, 10(47): 22601-22611. [49] 赵 玄,孙玉平,上媛媛,等.高性能、可弯曲碳纳米管纤维负载镍磷合金电催化析氢电极的研究[J].人工晶体学报,2020,49(9):1678-1683. ZHAO X, SUN Y P, SHANG Y Y, et al. High performance and bendable carbon nanotube fibers supported nickel-phosphorus alloy electrodes in electrocatalytic hydrogen evolution[J]. Journal of Synthetic Crystals, 2020, 49(9): 1678-1683(in Chinese). [50] MA J, TANG Y W, YANG G X, et al. Preparation of carbon supported Pt-P catalysts and its electrocatalytic performance for oxygen reduction[J]. Applied Surface Science, 2011, 257(15): 6494-6497. [51] WU Y S, CAI J Y, XIE Y F, et al. Regulating the interfacial electronic coupling of Fe2N via orbital steering for hydrogen evolution catalysis[J]. Advanced Materials, 2020, 32(26): 1904346. [52] JIA X D, ZHAO Y F, CHEN G B, et al. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst[J]. Advanced Energy Materials, 2016, 6(10): 1502585. [53] LI G X, YU J Y, YU W Q, et al. Phosphorus-doped iron nitride nanoparticles encapsulated by nitrogen-doped carbon nanosheets on iron foam in situ derived from saccharomycetes cerevisiae for electrocatalytic overall water splitting[J]. Small, 2020, 16(32): 2001980. [54] ZHANG Y, XIE Y, ZHOU Y T, et al. Well dispersed Fe2N nanoparticles on surface of nitrogen-doped reduced graphite oxide for highly efficient electrochemical hydrogen evolution[J]. Journal of Materials Research, 2017, 32(9): 1770-1776. [55] YU P, WANG L, XIE Y, et al. High-efficient, stable electrocatalytic hydrogen evolution in acid media by amorphous FexP coating Fe2N supported on reduced graphene oxide[J]. Small, 2018, 14(35): 1801717. [56] XUE W J, CHENG F, LI M L, et al. Surpassing electrocatalytic limit of earth-abundant Fe4+ embedded in N-doped graphene for (photo)electrocatalytic water oxidation[J]. Journal of Energy Chemistry, 2021, 54: 274-281. [57] ZHAI T F, NIU H J, YAN Y, et al. Rational hetero-interface design of Fe3N@Ni2Co-LDHs as high efficient electrocatalyst for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2021, 853: 157353. [58] YU F, ZHOU H Q, ZHU Z, et al. Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation[J]. ACS Catalysis, 2017, 7(3): 2052-2057. [59] YAN M L, MAO K, CUI P X, et al. In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution[J]. Nano Research, 2020, 13(2): 328-334. [60] WANG W, LIU L, LENG W C, et al. Coordination polymer-derived Fe3N nanoparticles for efficient electrocatalytic oxygen evolution[J]. Inorganic Chemistry, 2021, 60(16): 12136-12150. [61] XIE J F, XIE Y. Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges[J]. Chemistry-A European Journal, 2016, 22(11): 3588-3598. [62] ZHANG J, WANG T, LIU P, et al. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production[J]. Energy & Environmental Science, 2016, 9(9): 2789-2793. [63] ZHOU W J, WU X J, CAO X H, et al. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution[J]. Energy & Environmental Science, 2013, 6(10): 2921-2924. [64] KOPER M T M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis[J]. Journal of Electroanalytical Chemistry, 2011, 660(2): 254-260. [65] GUO Y B, CHEN Y N, CUI H J, et al. Bifunctional electrocatalysts for rechargeable Zn-air batteries[J]. Chinese Journal of Catalysis, 2019, 40(9): 1298-1310. [66] DENG Y P, JIANG Y, LIANG R L, et al. Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery[J]. Nature Communications, 2020, 11(1): 1-10. [67] TAN P, JIANG H R, ZHU X B, et al. Advances and challenges in lithium-air batteries[J]. Applied Energy, 2017, 204: 780-806. [68] ZHAO H, WENG C C, REN J T, et al. Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts[J]. Chinese Journal of Catalysis, 2020, 41(2): 259-267. [69] DENG D H, YU L, CHEN X Q, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angewandte Chemie, 2013, 52(1): 371-375. [70] NOH W Y, LEE J H, LEE J S. Nitrogen-doped carbon nanotube-graphene hybrid stabilizes MxN (M=Fe, Co) nanoparticles for efficient oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2020, 268: 118415. [71] CHEN Z Y, LI Y N, LEI L L, et al. Investigation of Fe2N@carbon encapsulated in N-doped graphene-like carbon as a catalyst in sustainable zinc-air batteries[J]. Catalysis Science & Technology, 2017, 7(23): 5670-5676. |
[1] | 敖刚, 李冬东, 朱倩钰, 刘昊橙, 李昊澄, 史毅, 罗庆亮, 杨庆. 射频等离子制备石墨烯负载Co3O4催化剂及其析氧性能研究[J]. 人工晶体学报, 2022, 51(8): 1406-1412. |
[2] | 许森, 林文松, 张虹, 石健强, 方宁象. TiB2、CNT双相增韧碳化硼复合陶瓷及其性能研究[J]. 人工晶体学报, 2022, 51(4): 716-722. |
[3] | 黄江峰, 王涛, 王凤华, 何志兴, 陈哲, 黄音博, 吴文娟. 铋系化合物改性的新型三元弛豫铁电体的性能研究[J]. 人工晶体学报, 2022, 51(3): 411-418. |
[4] | 潘宝俊, 张礼杰, 王佩剑. 二维层状金属碘化物的制备及光电磁器件的应用进展[J]. 人工晶体学报, 2022, 51(3): 538-550. |
[5] | 靳奉华, 郭辉, 孙裴, 袁涛, 郑立辉, 王岩松. 方形晶格夹层板减振性能仿真与优化[J]. 人工晶体学报, 2022, 51(2): 248-255. |
[6] | 雷磊, 吴健, 董子晗, 卢林, 李旭, 王良, 万昊. 新型BT-BMT-xBNT无铅高储能密度陶瓷研究[J]. 人工晶体学报, 2022, 51(11): 1967-1972. |
[7] | 陈心怡, 程宏飞, 赵炳新, 胡棉舒, 贾晓辉. 高岭石基介孔复合材料的二氧化碳吸附性能[J]. 人工晶体学报, 2021, 50(9): 1756-1764. |
[8] | 侯红臣, 郑旭鹏, 楼永伟, 程伟强, 陈建军. 成型压力对SiCnf增韧SiC陶瓷基复合材料微观结构和性能的影响[J]. 人工晶体学报, 2021, 50(8): 1525-1533. |
[9] | 葛道晗, 倪超, 丁杰, 张立强, 祝世宁. 多孔硅-Au/Ag枝晶复合材料研究进展[J]. 人工晶体学报, 2021, 50(7): 1314-1326. |
[10] | 葛薛豪, 吴静, 邢栋梁, 潘闻景, 张宇林, 蒋青松. NiCoSe4薄膜制备及其在染料敏化太阳能电池中的应用[J]. 人工晶体学报, 2021, 50(6): 1062-1069. |
[11] | 罗豪甦, 焦杰, 陈瑞, 朱荣峰, 张章, 徐嘉林, 赵静, 王西安, 林迪, 陈建伟, 狄文宁, 鲁丽, 朱莉莉. 弛豫铁电单晶的多功能特性及其器件应用[J]. 人工晶体学报, 2021, 50(5): 783-802. |
[12] | 张众, 杨琳, 李晓慧, 王梓兰, 王静怡. 草酸配体修饰的锆取代型硅钨-氧簇合物的合成、结构和电化学性质研究[J]. 人工晶体学报, 2021, 50(5): 884-888. |
[13] | 王泽岩, 王朋, 刘媛媛, 郑昭科, 程合锋, 黄柏标. 基于晶体学原理的高效光催化材料的设计与制备[J]. 人工晶体学报, 2021, 50(4): 685-707. |
[14] | 顾鹏, 王鹏刚, 官伟明, 郑丽, 谭云强. 单晶光纤生长技术研究进展[J]. 人工晶体学报, 2021, 50(12): 2362-2378. |
[15] | 闵涛, 马国华, 刘桂君, 郑玉婷. TiO2/Ni3[Ge2O5](OH)4复合材料的制备及光催化性能[J]. 人工晶体学报, 2021, 50(11): 2086-2092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||