[1] MEI Y, WENG G E, ZHANG B P, et al. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’[J]. Light: Science & Applications, 2017, 6(1): e16199. [2] SUN Y, ZHOU K, FENG M X, et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si[J]. Light: Science & Applications, 2018, 7: 13. [3] BAO G H, LI D B, SUN X J, et al. Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles[J]. Optics Express, 2014, 22(20): 24286. [4] ZHAO Y M, DONALDSON W R. Ultrafast UV AlGaN metal-semiconductor-metal photodetector with a response time below 25 ps[J]. IEEE Journal of Quantum Electronics, 2020, 56(3): 1-7. [5] LIU X K, GU H, LI K L, et al. AlGaN/GaN high electron mobility transistors with a low sub-threshold swing on free-standing GaN wafer[J]. AIP Advances, 2017, 7(9): 095305. [6] CHEN D B, LIU Z K, LIANG J H, et al. A sandwich-structured AlGaN/GaN HEMT with broad transconductance and high breakdown voltage[J]. Journal of Materials Chemistry C, 2019, 7(39): 12075-12079. [7] WANG Y, LI Z Y, HAO Y, et al. Evaluation by simulation of AlGaN/GaN Schottky barrier diode (SBD) with anode-via vertical field plate structure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2552-2557. [8] WANG J, GU Z Q, LIU X S, et al. An electronic enzyme-linked immunosorbent assay platform for protein analysis based on magnetic beads and AlGaN/GaN high electron mobility transistors[J]. The Analyst, 2020, 145(7): 2725-2730. [9] LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43. [10] KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 2019, 13(4): 233-244. [11] 徐明升,胡小波,徐现刚.AlGaN成核层对SiC衬底外延GaN薄膜应力及缺陷影响的研究[J].人工晶体学报,2014,43(6):1346-1350. XU M S, HU X B, XU X G. Effect of AlGaN nucleation layer on the stress and dislocation of the GaN film grown on SiC substrate[J]. Journal of Synthetic Crystals, 2014, 43(6): 1346-1350(in Chinese). [12] 贲建伟,孙晓娟,蒋 科,等.AlGaN基宽禁带半导体光电材料与器件[J].人工晶体学报,2020,49(11):2046-2067. BEN J W, SUN X J, JIANG K, et al. AlGaN based wide bandgap photoelectric materials and devices[J]. Journal of Synthetic Crystals, 2020, 49(11): 2046-2067(in Chinese). [13] OZEKI M, MOCHIZUKI K, OHTSUKA N, et al. New approach to the atomic layer epitaxy of GaAs using a fast gas stream[J]. Applied Physics Letters, 1988, 53(16): 1509-1511. [14] BANAL R G, FUNATO M, KAWAKAMI Y. Characteristics of high Al-content AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy[J]. Physica Status Solidi C, 2010, 7(7/8): 2111-2114. [15] MIYAKE H, NISHIO G, SUZUKI S, et al. Annealing of an AlN buffer layer in N2-CO for growth of a high-quality AlN film on sapphire[J]. Applied Physics Express, 2016, 9(2): 025501. [16] ZHANG L S, XU F J, WANG J M, et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography[J]. Scientific Reports, 2016, 6: 35934. [17] LIU X H, ZHANG J C, SU X J, et al. Fabrication of crack-free AlN film on sapphire by hydride vapor phase epitaxy using an in situ etching method[J]. Applied Physics Express, 2016, 9(4): 045501. [18] HE C G, ZHAO W, WU H L, et al. High-quality AlN film grown on sputtered AlN/sapphire via growth-mode modification[J]. Crystal Growth & Design, 2018, 18(11): 6816-6823. [19] CONROY M, ZUBIALEVICH V Z, LI H N, et al. Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods[J]. Journal of Materials Chemistry C, 2015, 3(2): 431-437. [20] ZHAO E, XU Y, CAO B, et al. Microstructural and optical properties of GaN buffer layers grown on graphene[J]. Japanese Journal of Applied Physics, 2018, 57(8): 085502. [21] DONG P, YAN J C, WANG J X, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24): 241113. |