[1] LEE T D, EBONG A U. A review of thin film solar cell technologies and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1286-1297. [2] NREL. Best research-cell efficiency chart[DB/OL]. https://www.nrel.gov/pv/cell-efficiency.html. [3] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 56)[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(7): 629-638. [4] 刘 浩,薛玉明,乔在祥,等.铜锌锡硫薄膜材料及其器件应用研究进展[J].物理学报,2015,64(6):22-33. LIU H, XUE Y M, QIAO Z X, et al. Progress of application research on Cu2ZnSnS4 thin film and its devices[J]. Acta Physica Sinica, 2015, 64(6): 22-33(in Chinese). [5] CHEN C, TANG J. Open-circuit voltage loss of antimony chalcogenide solar cells: status, origin, and possible solutions[J]. ACS Energy Letters, 2020, 5(7): 2294-2304. [6] KONDROTAS R, CHEN C, TANG J. Sb2S3 solar cells[J]. Joule, 2018, 2(5): 857-878. [7] MOON D G, REHAN S, YEON D H, et al. A review on binary metal sulfide heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109963. [8] LIU S C, YANG Y, Li Z B, et al. GeSe thin-film solar cells[J]. Materials Chemistry Frontiers, 2020, 4:775-787. [9] LIU S C, LI Z B, WU J P, et al. Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction[J]. Science China Materials, 2021, 64(9): 2118-2126. [10] LIU S C, DAI C M, MIN Y M, et al. An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics[J]. Nature Communications, 2021, 12: 670. [11] CHIRILĂ A, BUECHELER S, PIANEZZI F, et al. Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films[J]. Nature Materials, 2011, 10(11): 857-861. [12] SHIN D, SAPAROV B, MITZI D B. Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials[J]. Advanced Energy Materials, 2017, 7(11): 1602366. [13] LIU Y M, SUN Y, ROCKETT A. A new simulation software of solar cells—wxAMPS[J]. Solar Energy Materials and Solar Cells, 2012, 98: 124-128. [14] GHARIBSHAHIAN I, OROUJI A A, SHARBATI S. Towards high efficiency Cd-Free Sb2Se3 solar cells by the band alignment optimization[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110581. [15] BASAK A, SINGH U P. Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111184. [16] 曹 宇,祝新运,陈翰博,等.硒化锑薄膜太阳电池的模拟与结构优化研究[J].物理学报,2018,67(24):217-224. CAO Y, ZHU X Y, CHEN H B, et al. Simulation and optimal design of antimony selenide thin film solar cells[J]. Acta Physica Sinica, 2018, 67(24): 217-224(in Chinese). [17] LIU S C, MI Y, XUE D J, et al. Investigation of physical and electronic properties of GeSe for photovoltaic applications[J]. Advanced Electronic Materials, 2017, 3(11): 1700141. [18] 闫 彬,薛丁江,胡劲松.硒化亚锗薄膜太阳能电池研究进展[J/OL].化学学报.http://kns.cnki.net/kcms/detail/31.1320.o6.20220323.1631.002.html. YAN B, XUE D J, HU J S.Recent progress in GeSe thin-film solar cells[J/OL]. Acta Chimica Sinica. http://kns.cnki.net/kcms/detail/31.1320.o6.20220323.1631.002.html. [19] CHEN B W, RUAN Y R, LI J M, et al. Highly oriented GeSe thin film: self-assembly growth via the sandwiching post-annealing treatment and its solar cell performance[J]. Nanoscale, 2019, 11(9): 3968-3978. [20] MOHAMMADI M H, FATHI D, ESKANDARI M. NiO@GeSe core-shell nano-rod array as a new hole transfer layer in perovskite solar cells: a numerical study[J]. Solar Energy, 2020, 204: 200-207. |