[1] 张 昭,张 磊,郭江川,等.声子晶体中波传播的自准直效应[J].人工晶体学报,2021,50(7):1371-1377. ZHANG Z, ZHANG L, GUO J C, et al. Self-collimation effect of wave propagation in phononic crystals[J]. Journal of Synthetic Crystals, 2021, 50(7): 1371-1377(in Chinese). [2] 郭志巍,郭寒贝,王 婷.侧向局域共振超构板声振特性[J].物理学报,2021,70(21):214301. GUO Z W, GUO H B, WANG T. Vibro-acoustic performance of acoustic metamaterial plate with periodic lateral local resonator[J]. Acta Physica Sinica, 2021, 70(21): 214301(in Chinese). [3] 曹蕾蕾,武建华,樊 浩,等.考虑可制造性约束的声子晶体多目标拓扑优化[J].力学学报,2022,54(4):1136-1144. CAO L L, WU J H, FAN H, et al. Multi-objective topology optimization of phononic crystals considering manufacturing constraint[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1136-1144(in Chinese). [4] PARK S, JEON W. Ultra-wide low-frequency band gap in a tapered phononic beam[J]. Journal of Sound and Vibration, 2021, 499: 115977. [5] 郭振坤,李凤明.超材料结构的弹性波带隙主动调控研究进展[J].科学通报,2022,67(12):1249-1263. GUO Z K, LI F M. Advances in active tuning of elastic wave band gaps in metamaterial structures[J]. Chinese Science Bulletin, 2022, 67(12): 1249-1263(in Chinese). [6] HUANG Y L, LI J, CHEN W Q, et al. Tunable bandgaps in soft phononic plates with spring-mass-like resonators[J]. International Journal of Mechanical Sciences, 2019, 151: 300-313. [7] LI J, WANG Y T, CHEN W Q, et al. Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures[J]. Journal of Sound and Vibration, 2019, 459: 114848. [8] ARAVANTINOS-ZAFIRIS N, KANISTRAS N, SIGALAS M M. Acoustoelastic phononic metamaterial for isolation of sound and vibrations[J]. Journal of Applied Physics, 2021, 129(10): 105108. [9] JOSHILKAR M P. Analysis of honeycomb structure[J]. International Journal for Research in Applied Science and Engineering Technology, 2018, 6(5): 950-958. [10] SHIFA M, TARIQ F, CHANDIO A D. Mechanical and electrical properties of hybrid honeycomb sandwich structure for spacecraft structural applications[J]. Journal of Sandwich Structures & Materials, 2021, 23(1): 222-240. [11] 苏继龙,吴金东,刘远力.蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J].材料工程,2019,47(8):49-58. SU J L, WU J D, LIU Y L. Progress in elastic property and impact resistance of honeycomb structure mechanical metamaterial[J]. Journal of Materials Engineering, 2019, 47(8): 49-58(in Chinese). [12] GIBSON L J, ASHBY M. Cellular solids [M]. Oxford: Pergamon Press, 1988:192-196. [13] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson's ratio[J]. Computational Materials Science, 2012, 58: 140-153. [14] 卢子兴,王 欢,杨振宇,等.星型-箭头蜂窝结构的面内动态压溃行为[J].复合材料学报,2019,36(8):1893-1900. LU Z X, WANG H, YANG Z Y, et al. In-plane dynamic crushing of star-arrowhead honeycomb structure[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1893-1900(in Chinese). [15] 沈建邦,肖俊华.负泊松比可变弧角曲边内凹蜂窝结构的力学性能[J].中国机械工程,2019,30(17):2135-2141. SHEN J B, XIAO J H. Mechanics properties of negative poisson's ratio honeycomb structures with variable arc angle curved concave sides[J]. China Mechanical Engineering, 2019, 30(17): 2135-2141(in Chinese). [16] WANG H, LU Z X, YANG Z Y, et al. In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions[J]. International Journal of Mechanical Sciences, 2019, 151: 746-759. [17] HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation[J]. Thin-Walled Structures, 2018, 131: 373-384. [18] HOU X H, DENG Z C, ZHANG K. Dynamic crushing strength analysis of auxetic honeycombs[J]. Acta Mechanica Solida Sinica, 2016, 29(5): 490-501. [19] TAN H L, HE Z C, LI K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio[J]. Composite Structures, 2019, 229: 111415. [20] 任 鑫,张相玉,谢亿民.负泊松比材料和结构的研究进展[J].力学学报,2019,51(3):656-687. REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687(in Chinese). |