[1] 王芳平,周凯玲,马 婧,等.葡萄柚皮多孔碳高性能对称性超级电容器电极材料的制备及性能[J].硅酸盐学报,2021,49(3):495-502. WANG F P, ZHOU K L, MA J, et al. Preparation and properties of porous carbon electrode material of grapefruit peel for high performance symmetrical supercapacitor[J]. Journal of the Chinese Ceramic Society, 2021, 49(3): 495-502(in Chinese). [2] AROULMOJI V, PRIYADHARSINI C, ANBARASAN P, et al. Synthesize, characterization and electrochemical investigations of cobalt oxide nanoparticles to supercapacitor application[J]. Aegaeum, 2020, 8(8): 750. [3] VARGHEESE S, DINESH M, KAVYA K V, et al. Triazine-based 2D covalent organic framework-derived nitrogen-doped porous carbon for supercapacitor electrode[J]. Carbon Letters, 2021, 31(5): 879-886. [4] 杨 芳,刘 晨,杨绍斌,等.用于超级电容器的煤基活性炭电极材料的研究进展[J].硅酸盐学报,2019,47(10):1499-1508. YANG F, LIU C, YANG S B, et al. Research progress on coal-based activated carbon electrode material for supercapacitor[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 1499-1508(in Chinese). [5] ÜNER O, ASLAN N, SARıOĞLU A, et al. Facile preparation of commercial Bi2O3 nanoparticle decorated activated carbon for pseudocapacitive supercapacitor applications[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 15981-15994. [6] CHAMEH B, MORADI M, HAJATI S, et al. Design and construction of ZIF(8 and 67) supported Fe3O4 composite as advanced materials of high performance supercapacitor[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126: 114442. [7] 李明伟,杨绍斌.介孔CoMn2O4/还原氧化石墨烯复合材料的制备及其超级电容性能[J].硅酸盐学报,2021,49(1):167-173. LI M W, YANG S B. Preparation of mesoporous CoMn2O4/reduced graphene oxide composites and their supercapacitor properties[J]. Journal of the Chinese Ceramic Society, 2021, 49(1): 167-173(in Chinese). [8] HOU Z X, SHI P, ZOU S N. Three-dimensional porous graphene/polyaniline hybrids for high performance supercapacitor electrodes[J]. Research and Application of Materials Science, 2020, 2(1): 17-22. [9] ASKARI M B, SALARIZADEH P, SEIFI M, et al. Binary mixed molybdenum cobalt sulfide nanosheets decorated on rGO as a high-performance supercapacitor electrode[J]. Nanotechnology, 2020, 31(27): 275406. [10] ZHANG Y T, LIU M N, SUN S S, et al. The preparation and characterization of SnO2/rGO nanocomposites electrode materials for supercapacitor[J]. Advanced Composites Letters, 2020, 29: 2633366X2090983. [11] MO T M, ZENG L, WANG Z X, et al. Symmetrizing cathode-anode response to speed up charging of nanoporous supercapacitors[J]. Green Energy & Environment, 2022, 7(1): 95-104. [12] POTPHODE D, SHARMA C S. Pseudocapacitance induced candle soot derived carbon for high energy density electrochemical supercapacitors: non-aqueous approach[J]. Journal of Energy Storage, 2020, 27: 101114. [13] 田 杜,刘 奔,李 奇,等.一维有序聚苯胺纳米阵列在超级电容器中的研究进展[J].化工进展,2021,40(6):3330-3345. TIAN D, LIU B, LI Q, et al. Research progress of one-dimensional ordered polyaniline nanoarrays in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3330-3345(in Chinese). [14] HU Y, JENSEN J O, ZHANG W, et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angewandte Chemie International Edition, 2014, 53(14): 3675-3679. [15] MA T Y, DAI S, JARONIEC M, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. Journal of the American Chemical Society, 2014, 136(39): 13925-13931. [16] 周王帆,陈 新,曹红亮,等.法国梧桐枯叶基活性炭的制备及其在超级电容器中的应用[J].化工学报,2017,68(7):2918-2924+2614. ZHOU W F, CHEN X, CAO H L, et al. Preparation of platanus leaf-based activated carbon and its application to supercapacitors[J]. CIESC Journal, 2017, 68(7): 2918-2924+2614(in Chinese). [17] MASA J, XIA W, SINEV I, et al. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes[J]. Angewandte Chemie International Edition, 2014, 53(32): 8508-8512. [18] MORALES-GUIO C G, YURANOV I, KIWI-MINSKER L. Highly selective catalytic reduction of nitro- to azoarenes under ambient conditions[J]. Topics in Catalysis, 2014, 57(17/18/19/20): 1526-1532. [19] 叶 亚,朱婧怡,姚依男,等.在多元醇体系中一锅法合成具有良好储锂性能的介孔碳-锡复合材料[J].化学学报,2015,73(2):151-155. YE Y, ZHU J Y, YAO Y N, et al. One-pot synthesis of Sn/mesoporous carbon composite in a polyol system with well-improved lithium storage capability[J]. Acta Chimica Sinica, 2015, 73(2): 151-155(in Chinese). [20] 武志红,蒙真真,邓 悦,等.分级多孔碳复合吸波材料研究进展[J].硅酸盐学报,2021,49(6):1125-1134. WU Z H, MENG Z Z, DENG Y, et al. Research progress on hierarchical porous carbon composite absorbing materials[J]. Journal of the Chinese Ceramic Society, 2021, 49(6): 1125-1134(in Chinese). [21] WU S Q, YIN Y B, WEI D H, et al. Synthesis of nitrogen-doped porous carbon and partial poly (2, 2'-dithiodianiline) composite as advanced supercapacitor electrode materials[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(7): 9332-9344. [22] KIM J, LEE J, YUN J, et al. Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode[J]. Advanced Functional Materials, 2020, 30(15): 1910538. [23] 杨 洋.含有反应型基团聚磷腈衍生物合成工艺的优化及其功能化的研究[D].北京:北京化工大学,2018. YANG Y. Optimization of synthetic processes for polyphosphazene derivatives containing reactive groups and its functional research[D]. Beijing: Beijing University of Chemical Technology, 2018(in Chinese). [24] CUI F J, DENG Q F, ZHAO H P, et al. Ionic liquid promoted synthesis of nitrogen, phosphorus, and fluorine triple-doped mesoporous carbon as metal-free electrocatalyst for oxygen reduction reaction[J]. Ionics, 2020, 26(9): 4609-4619. [25] ZHANG W T, YU H, TANG D H, et al. Synthesis of MoS2 nanoparticles embedded, N, S co-doped mesoporous carbon via molten salt method as hydrogen evolution electrocatalyst under alkaline and neutral conditions[J]. International Journal of Hydrogen Energy, 2021, 46(27): 13936-13945. [26] SAMIEE L, HASSANI S S. N and S co-doped ordered mesoporous carbon: an efficient electrocatalyst for oxygen reduction reaction in microbial fuel cells[J]. Current Nanoscience, 2020, 16(4): 625-638. [27] YANG D S, BHATTACHARJYA D, SONG M Y, et al. Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction[J]. Carbon, 2014, 67: 736-743. [28] ZHU Y P, LIU Y L, LIU Y P, et al. Direct synthesis of phosphorus-doped mesoporous carbon materials for efficient electrocatalytic oxygen reduction[J]. ChemCatChem, 2015, 7(18): 2903-2909. [29] YANG D S, BHATTACHARJYA D, INAMDAR S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society, 2012, 134(39): 16127-16130. [30] ZHANG C Z, MAHMOOD N, YIN H, et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced Materials, 2013, 25(35): 4932-4937. [31] WU J, ZHENG X J, JIN C, et al. Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction[J]. Carbon, 2015, 92: 327-338. [32] LIN G F, WANG Q, YANG X, et al. Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization[J]. RSC Advances, 2020, 10(30): 17768-17776. [33] CHEN W S, ZHAO Z X, YU X. Phosphorus-modulated controllably oxidized carbon nanotube architectures for the ultrahigh energy density of pseudocapacitive capacitors[J]. Electrochimica Acta, 2020, 341: 136044. [34] 雷龙艳.杂原子二元掺杂介孔碳材料的制备及性能研究[D].兰州:兰州理工大学,2016. LEI L Y. Preparation of the heteroatom dual doped mesoporous carbon materials and its electrochemical performances[D]. Lanzhou: Lanzhou University of Technology, 2016(in Chinese). |