[1] 王琦琨.PVT法氮化铝晶体生长动力学及热应力建模与数值模拟研究[D].上海:上海大学,2020. WANG Q K. Growth kinetics and thermal stress modeling and simulation during AlN crystal growth by PVT method[D]. Shanghai: Shanghai University, 2020(in Chinese). [2] WAUK M T, WINSLOW D K. Vacuum deposition of AlN acoustic transducers[J]. Applied Physics Letters, 1968, 13(8): 286-288. [3] WINSZTAL S, WNUK B, MAJEWSKA-MINOR H, et al. Aluminium nitride thin films and their properties[J]. Thin Solid Films, 1976, 32(2): 251-254. [4] SOMENO Y, SASAKI M, HIRAI T. Low-temperature growth of polycrystalline AlN films by microwave plasma CVD[J]. Japanese Journal of Applied Physics, 1990, 29(Part 2, No. 2): L358-L360. [5] GUERRERO R M, GARCIA J R V. Preparation of aluminum nitride thin films by CVD[J]. Materials and Manufacturing Processes, 2000, 15(2): 259-267. [6] 孙 剑,吴嘉达,应质峰,等.氮化铝薄膜的低温沉积[J].半导体学报,2000,21(9):914-917. SUN J, WU J D, YING Z F, et al. Low-temperature deposition of AlN films[J]. Chinese Journal of Semiconductors, 2000, 21(9): 914-917(in Chinese). [7] 于 毅,赵宏锦,高占友,等.直流磁控反应溅射制备硅基AlN薄膜[J].压电与声光,2005,27(1):53-55. YU Y, ZHAO H J, GAO Z Y, et al. Deposition of AlN thin films on silicon by DC magnetron reactive sputtering[J]. Piezoelectrics & Acoustooptics, 2005, 27(1): 53-55(in Chinese). [8] TAYLOR K M, LENIE C. Some properties of aluminum nitride[J]. Journal of the Electrochemical Society, 1960, 107(4): 308. [9] EVANS P E, DAVIES T J. Aluminium nitride whiskers[J]. Nature, 1963, 197(4867): 587. [10] DRUM C M, MITCHELL J W. Electron microscopic examination of role of axial dislocations in growth of AlN whiskers[J]. Applied Physics Letters, 1964, 4(9): 164-165. [11] DAVIES T J, EVANS P E. Strength of aluminium nitride whiskers[J]. Nature, 1965, 207(4994): 254-255. [12] WITZKE H D. Über wachstum von AlN-einkristallen aus der dampfphase[J]. Physica Status Solidi (b), 1962, 2(8): 1109-1114. [13] DRUM C M. Axial imperfections in filamentary crystals of aluminum nitride. I[J]. Journal of Applied Physics, 1965, 36(3): 816-823. [14] SLACK G A, MCNELLY T F. Growth of high purity AlN crystals[J]. Journal of Crystal Growth, 1976, 34(2): 263-279. [15] SLACK G A, MCNELLY T F. AlN single crystals[J]. Journal of Crystal Growth, 1977, 42: 560-563. [16] SLACK G A. Aluminum nitride crystal growth[R]. General Electric Corporate Research and Development Schenectady NY, 1979. [17] SEGAL A S, KARPOV S Y, MAKAROV Y N, et al. On mechanisms of sublimation growth of AlN bulk crystals[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 68-72. [18] EDGAR J H, LIU L, LIU B, et al. Bulk AlN crystal growth: self-seeding and seeding on 6H-SiC substrates[J]. Journal of Crystal Growth, 2002, 246(3/4): 187-193. [19] SCHLESSER R, SITAR Z. Growth of bulk AlN crystals by vaporization of aluminum in a nitrogen atmosphere[J]. Journal of Crystal Growth, 2002, 234(2/3): 349-353. [20] ZHUANG D, HERRO Z G, SCHLESSER R, et al. Seeded growth of AlN single crystals by physical vapor transport[J]. Journal of Crystal Growth, 2006, 287(2): 372-375. [21] LU P, COLLAZO R, DALMAU R F, et al. Seeded growth of AlN bulk crystals in m- and c-orientation[J]. Journal of Crystal Growth, 2009, 312(1): 58-63. [22] HERRO Z G, ZHUANG D, SCHLESSER R, et al. Growth of AlN single crystalline boules[J]. Journal of Crystal Growth, 2010, 312(18): 2519-2521. [23] A BOUGROV V L. Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe[J]. Wiley, 2001: 1-30. [24] BALKAŞ C M, SITAR Z, ZHELEVA T, et al. Sublimation growth and characterization of bulk aluminum nitride single crystals[J]. Journal of Crystal Growth, 1997, 179(3/4): 363-370. [25] TANAKA M, NAKAHATA S, SOGABE K, et al. Morphology and X-ray diffraction peak widths of aluminum nitride single crystals prepared by the sublimation method[J]. Japanese Journal of Applied Physics, 1997, 36(Part 2, No. 8B): L1062-L1064. [26] TAIROV Y M. Growth of bulk SiC[J]. Materials Science and Engineering: B, 1995, 29(1/2/3): 83-89. [27] SCHOWALTER L J, CARLOS ROJO J, YAKOLEV N, et al. Preparation and characterization of single-crystal aluminum nitride substrates[J].MRS Internet Journal of Nitride Semiconductor Research, 2000, 5(1): 445-451. [28] SCHOWALTER L J, ROJO J C, SLACK G A, et al. Epitaxial growth of AlN and Al0.5Ga0.5N layers on aluminum nitride substrates[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 78-81. [29] Silicon carbide and nitride materials catalog[EB/OL]. (2021-12-07) [2022-6-30]. https://assets.wolfspeed.com/uploads/2020/12/materials_catalog.pdf. [30] WANG Q K, LEI D, HE G D, et al. Characterization of 60 mm AlN single crystal wafers grown by the physical vapor transport method[J]. Physica Status Solidi (a), 2019, 216(16): 1900118. [31] WANG T Y, TASI C T, LIN K Y, et al. Surface evolution and effect of V/Ⅲ ratio modulation on etch-pit-density improvement of thin AlN templates on nano-patterned sapphire substrates by metalorganic chemical vapor deposition[J]. Applied Surface Science, 2018, 455: 1123-1130. [32] WANG J M, XU F J, HE C G, et al. High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition[J]. Scientific Reports, 2017, 7: 42747. [33] KAKANAKOVA-GEORGIEVA A, CIECHONSKI R R, FORSBERG U, et al. Hot-wall MOCVD for highly efficient and uniform growth of AlN[J]. Crystal Growth & Design, 2009, 9(2): 880-884. [34] LI X H, WANG S, XIE H E, et al. Growth of high-quality AlN layers on sapphire substrates at relatively low temperatures by metalorganic chemical vapor deposition[J]. Physica Status Solidi (B) Basic Research, 2015, 252(5): 1089-1095. [35] LAHOURCADE L, BELLET-AMALRIC E, MONROY E, et al. Plasma-assisted molecular-beam epitaxy of AlN(1122) on m sapphire[J]. Applied Physics Letters, 2007, 90(13): 131909. [36] PARK M, HAO Z J, KIM D G, et al. A 10 GHz single-crystalline scandium-doped aluminum nitride lamb-wave resonator[C]//2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII. Berlin, Germany. IEEE,: 450-453. [37] HIRATA S, OKAMOTO K, INOUE S, et al. Epitaxial growth of AlN films on single-crystalline Ta substrates[J]. Journal of Solid State Chemistry, 2007, 180(8): 2335-2339. [38] WANG W L, YANG W J, LIU Z L, et al. Epitaxial growth of homogeneous single-crystalline AlN films on single-crystalline Cu(111) substrates[J]. Applied Surface Science, 2014, 294: 1-8. [39] LUO J H, WANG W L, ZHENG Y L, et al. AlN/nitrided sapphire and AlN/non-nitrided sapphire hetero-structures epitaxially grown by pulsed laser deposition: a comparative study[J]. Vacuum, 2017, 143: 241-244. [40] 汪洪海,郑启光,魏学勤,等.等离子体辅助反应式脉冲激光熔蚀制备AlN薄膜的低温生长[J].功能材料,1999,30(2):204-206. WANG H H, ZHENG Q G, WEI X Q,et al. Low temperature growth of AlN thin films deposited by reactively pulse-laser ablation with plasma-assisted[J]. Journal of Functional Materials, 1999, 30(2): 204-206(in Chinese). [41] LI G Q, OHTA J, KOBAYASHI A, et al. Growth temperature dependence of structural properties for single crystalline GaN films on MgAl2O4 substrates by pulsed laser deposition[J]. Semiconductor Science and Technology, 2006, 21(8): 1026-1029. [42] YANG H, WANG W L, LIU Z L, et al. Epitaxial growth of 2 inch diameter homogeneous AlN single-crystalline films by pulsed laser deposition[J]. Journal of Physics D: Applied Physics, 2013, 46(10): 105101. [43] WANG W L, YANG W J, LIN Y H, et al. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures[J]. Scientific Reports, 2015, 5: 16453. [44] LI G Q, WANG W L, YANG W J, et al. Epitaxial growth of group Ⅲ-nitride films by pulsed laser deposition and their use in the development of LED devices[J]. Surface Science Reports, 2015, 70(3): 380-423. [45] WANG H Y, LIN Z T, WANG W L, et al. Growth mechanisms of GaN epitaxial films grown on ex situ low-temperature AlN templates on Si substrates by the combination methods of PLD and MOCVD[J]. Journal of Alloys and Compounds, 2017, 718: 28-35. [46] WANG H Y, LIN Z T, LIN Y H, et al. High-performance GaN-based LEDs on Si substrates: the utility of ex situ low-temperature AlN template with optimal thickness[J]. IEEE Transactions on Electron Devices, 2017, 64(11): 4540-4546. [47] LIN Y H, YANG M J, WANG W L, et al. High-quality crack-free GaN epitaxial films grown on Si substrates by a two-step growth of AlN buffer layer[J]. CrystEngComm, 2016, 18(14): 2446-2454. [48] LEE T Y, SONG J T. Detection of carcinoembryonic antigen using AlN FBAR[J]. Thin Solid Films, 2010, 518(22): 6630-6633. [49] KIM E, CHOI Y K, SONG J, et al. Detection of various self-assembled monolayers by AlN-based film bulk acoustic resonator[J]. Materials Research Bulletin, 2013, 48(12): 5076-5079. [50] LEE M S, WU S A, JHONG S B, et al. Influence of substrate temperature to prepare (103) oriented AlN films[J]. Microelectronics Reliability, 2010, 50(12): 1984-1987. [51] LEE J B, CHO D H, KIM D Y, et al. Relationships between material properties of piezo-electric thin films and device characteristics of film bulk acoustic resonators[J]. Thin Solid Films, 2007, 516(2/3/4): 475-480. [52] MATSUMOTO H, ASAI K, KOBAYASHI N, et al. Influence of underlayer materials on preferred orientations of sputter-deposited AlN/Mo bilayers for film bulk acoustic wave resonators[J]. Japanese Journal of Applied Physics, 2004, 43(12): 8219-8222. [53] HUANG C L, TAY K W, WU L. Effect of AlN film thickness and top electrode materials on characteristics of thin-film bulk acoustic-wave resonator devices[J]. Japanese Journal of Applied Physics, 2005, 44(3): 1397-1402. [54] FELMETSGER V V, LAPTEV P N. Stress control in AlN and Mo films for electro-acoustic devices[C]//2008 IEEE International Frequency Control Symposium. Honolulu, HI, USA. IEEE: 629-633. [55] NEWELL W E. Face-mounted piezoelectric resonators[J]. Proceedings of the IEEE, 1965, 53(6): 575-581. [56] RUBY R, MERCHANT P. Micromachined thin film bulk acoustic resonators[C]//Proceedings of IEEE 48th Annual Symposium on Frequency Control. Boston, MA, USA. IEEE,: 135-138. [57] RUBY R, BRADLEY P, LARSON J, et al. Ultra-miniature high-Q filters and duplexers using FBAR technology[C]//2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177). San Francisco, CA, USA. IEEE: 120-121. [58] SATOH Y, NISHIHARA T, YOKOYAMA T, et al. Development of piezoelectric thin film resonator and its impact on future wireless communication systems[J]. Japanese Journal of Applied Physics, 2005, 44(5A): 2883-2894. [59] AOTA Y, SAKYU Y, TANIFUJI S, et al. 4D-4 fabrication of FBAR for GHz band pass filter with AlN film grown using MOCVD[C]//2006 IEEE Ultrasonics Symposium. Vancouver, BC, Canada. IEEE,: 337-340. [60] WANG J L, PARK M, MERTIN S, et al. A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride films[J]. Journal of Microelectromechanical Systems, 2020, 29(5): 741-747. [61] HODGE M D, VETURY R, GIBB S R, et al. High rejection UNII 5.2 GHz wideband bulk acoustic wave filters using undoped single crystal AlN-on-SiC resonators[J]. 2017 IEEE International Electron Devices Meeting (IEDM), 2017: 25.6.1-25.6.4. [62] YI X Y, ZHAO L S, OUYANG P D, et al. High-quality film bulk acoustic resonators fabricated on AlN films grown by a new two-step method[J]. IEEE Electron Device Letters, 2022, 43(6): 942-945. [63] 莫尔顿 R,贝尔西克 J.具有声学振动的剪切模式和纵向模式的增强反射的谐振器结构:CN108463720A[P].2018-08-28. MORTON R, BELSIK J. Resonator structure with enhanced reflection of shear mode and longitudinal mode of acoustic vibration: CN108463720A[P]. 2018-08-28(in Chinese). [64] QM77040产品数据手册[EB/OL].(2019-09-20)[2022-5-10].https://cn.qorvo.com/products/p/QM77040. Product Data Sheet of QM77040[EB/OL].(2019-09-20)[2022-5-10].https://cn.qorvo.com/products/p/QM77040(in Chinese). [65] QM77032产品数据手册[EB/OL].(2019-12-12)[2022-5-10].https://cn.qorvo.com/products/p/QM77032. Product Data Sheet of QM77032[EB/OL].(2019-12-12)[2022-5-10].https://cn.qorvo.com/products/p/QM77032(in Chinese). [66] vivo X50 Pro拆解:微云台结构如何赋能智能手机[EB/OL].(2020-10-9)[2022-5-10].http://news.eeworld.com.cn/xfdz/ic512198.html. vivo X50 Pro dismantling: how does the micro-gimbal structure empower smartphones[EB/OL].(2020-10-9)[2022-5-10].http://news.eeworld.com.cn/xfdz/ic512198.html(in Chinese). [67] E拆解:实拆红米 K30 5G, 揭露配置之外的秘密[EB/OL].(2020-3-16)[2022-5-10].https://mp.ofweek.com/mobile/a545693622456. E dismantling: real dismantling of Redmi K30 5G, revealing the secrets beyond the configuration[EB/OL].(2020-3-16)[2022-5-10].https://mp.ofweek.com/mobile/a545693622456(in Chinese). [68] 中美“科技”博弈只是表象?华为手机被拆开后!才让人看清现实![EB/OL].(2021-9-1)[2022-7-3]. https://baijiahao.baidu.com/s?id=1709685517592420764. Is the “science and technology” game between China and the United States just an appearance? Huawei’s mobile phone was disassembled before people could see the reality! [EB/OL].(2021-9-1)[2022-7-3]. https://baijiahao.baidu.com/s?id=1709685517592420764(in Chinese). [69] 新思界网.行业分析:5G时代下BAW滤波器竞争优势明显 外企垄断全球市场[EB/OL].(2022-2-9)[2022-5-5]. https://www.163.com/dy/article/GVKD2LTP0514E30D.html. Industry analysis: BAW filters have obvious competitive advantages in the 5G era, and foreign companies monopolize the global market[EB/OL]. (2022-2-9)[2022-5-5]. https://www.163.com/dy/article/GVKD2LTP0514E30D.html(in Chinese). [70] 李国强,衣新燕,张铁林,等.射频前端模块中有源器件和无源单晶器件及单片集成方法:CN110544689A[P].2019-12-06. LI G Q, YI X Y, ZHANG T L, et al Active devices and passive single crystal devices in RF front-end module and monolithic integration method:CN110544689A[P]. 2019-12-06(in Chinese). [71] 李国强,衣新燕,张铁林,等.FBAR滤波器与放大器或开关单片集成的器件及方法:CN110540169A[P].2019-12-06. LI G Q, YI X Y, ZHANG T L, et al Device and method for monolithic integration of FBAR filter and amplifier or switch: CN110540169A[P].2019-12-06(in Chinese). [72] GUO H H, GAO Y, LIU T T. A theoretical study of the VOC sensor based on polymer-coated diaphragm embedded with FBAR[J]. Measurement, 2018, 129: 206-210. [73] HAN C Z, WANG X, ZHAO Q L, et al. Solidly mounted resonator sensor for biomolecule detections[J]. RSC Advances, 2019, 9(37): 21323-21328. [74] BA HASHWAN S S, KHIR M H M, AL-DOURI Y, et al. Analytical modeling of AlN-based film bulk acoustic wave resonator for hydrogen sulfide gas detection based on PiezoMUMPs[J]. Journal of Physics: Conference Series, 2021, 1962(1): 012003. |