[1] LIU G, LI S, LU Y Y, et al. Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→γ-Bi2O3→α-Bi2O3 transformation in a facile precipitation method[J]. Journal of Alloys and Compounds, 2016, 689: 787-799. [2] HARIHARAN S, UDAYABHASKAR R, RAVINDRAN T R, et al. Surfactant assisted control on optical, fluorescence and phonon lifetime in α-Bi2O3 microrods[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 163: 13-19. [3] ZHOU G T, HUANG Y L, WEI D L, et al. Solvothermal synthesis, morphology, and optical properties of Bi2O3 and Bi/Bi2O2.75 powders[J].Journal of Nanoparticle Research, 2020, 22(1): 1-12. [4] FAN G, MA Z Y, LI X B, et al. Coupling of Bi2O3 nanoparticles with g-C3N4 for enhanced photocatalytic degradation of methylene blue[J]. Ceramics International, 2021, 47(4): 5758-5766. [5] LIU H, LUO M, HU J C, et al. β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance[J]. Applied Catalysis B: Environmental, 2013, 140/141: 141-150. [6] CARLSSON J M, HELLSING B, DOMINGOS H S, et al. Theoretical investigation of the pure and Zn-doped α and δ phases of Bi2O3[J]. Physical Review B, 2002, 65(20): 205122. [7] MATSUMOTO A, KOYAMA Y, TANAKA I. Structures and energetics of Bi2O3 polymorphs in a defective fluorite family derived by systematic first-principles lattice dynamics calculations[J]. Physical Review B, 2010, 81(9): 094117. [8] SHAN L W, WANG G L, LIU L Z, et al. Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl (001) core-shell heterojunction[J]. Journal of Molecular Catalysis A: Chemical, 2015, 406: 145-151. [9] 孙瑞民,贾晓硕,徐健强,等.Co掺杂亚稳相γ-Bi2O3光电性质的第一性原理计算[J].广州化工,2018,46(16):17-20. SUN R M, JIA X S, XU J Q, et al. First-principles calculations on electronic and optical properties of metastable γ-Bi2O3 doped with Co[J]. Guangzhou Chemical Industry, 2018, 46(16): 17-20(in Chinese). [10] 郭保智,刘永生,武新芳,等.ZnO氧空位与掺杂原子相互作用第一性原理研究[J].人工晶体学报,2014,43(1):211-216. GUO B Z, LIU Y S, WU X F, et al. First-principles study on the interaction between oxygen vacancies of ZnO and doping atoms[J]. Journal of Synthetic Crystals, 2014, 43(1): 211-216(in Chinese). [11] 毛著鹏,赵旭才,王少霞,等.Tc掺杂含氧空位的SnO2电子结构的第一性原理研究[J].伊犁师范学院学报(自然科学版),2019,13(3):32-37. MAO Z P, ZHAO X C, WANG S X, et al. The first-principle study of SnO2 electronic structure doped by Tc with oxygen vacancy[J]. Journal of Yili Normal University (Natural Science Edition), 2019, 13(3): 32-37(in Chinese). [12] 于智清,王 逊,杨 合,等.氧空位和B离子共掺杂TiO2催化性能的研究[J].材料保护,2016,49(S1):37-39. YU Z Q, WANG X, YANG H, et al. Study on catalytic performance of oxygen vacancy and B ion codoped TiO2[J]. Materials Protection, 2016, 49(S1): 37-39(in Chinese). [13] MALATHY P, VIGNESH K, RAJARAJAN M, et al. Enhanced photocatalytic performance of transition metal doped Bi2O3 nanoparticles under visible light irradiation[J]. Ceramics International, 2014, 40(1): 101-107. [14] LI T, QUAN S Y, SHI X F, et al. Fabrication of La-doped Bi2O3 nanoparticles with oxygen vacancies for improving photocatalytic activity[J]. Catalysis Letters, 2020, 150(3): 640-651. [15] AZHAR N S, TAIB M M, HASSAN O H, et al. Structural, electronic and optical properties of Bi2O3 polymorphs by first-principles calculations for photocatalytic water splitting[J]. Materials Research Express, 2017, 4(3): 034002. [16] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [17] KRESSE G. Ab initio molecular dynamics for liquid metals[J]. Journal of Non-Crystalline Solids, 1995, 192/193: 222-229. [18] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [19] BLÕCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [20] STROPPA A, KRESSE G. Unraveling the Jahn-Teller[J]. Physical Review B, 2009, 14:1-5. [21] LI Y J, YANG F, YU Y. Enhanced photocatalytic activity of α-Bi2O3 with high electron-hole mobility by codoping approach: a first-principles study[J]. Applied Surface Science, 2015, 358: 449-456. [22] CHAI S Y, KIM Y J, JUNG M H, et al. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst[J]. Journal of Catalysis, 2009, 262(1): 144-149. [23] AMBROSCH-DRAXL C, SOFO J O. Linear optical properties of solids within the full-potential linearized augmented planewave method[J]. Computer Physics Communications, 2006, 175(1): 1-14. [24] FOX M. Optical properties of solids[M]. New York: Oxford University Press, 2001. [25] WOOTEN F. Optical Properties of Solids[M]. Pittsburgh: Academic Press, 1972. |