[1] OKU T. Crystal structures of perovskite halide compounds used for solar cells[J]. Reviews on Advanced Materials Science, 2020, 59(1): 264-305. [2] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131: 6050-6051. [3] NREL. Best research-cell efficiency chart[EB/OL]. https://www.nrel.gov/pv/cell-efficiency.html. [4] CHOUHAN L T, GHIMIRE S, SUBRAHMANYAM C, et al. Synthesis, optoelectronic properties and applications of halide perovskites[J]. Chemical Society Reviews, 2020, 49(10): 2869-2885. [5] LUO J, WANG Y X, ZHANG Q F. Progress in perovskite solar cells based on ZnO nanostructures[J]. Solar Energy, 2018, 163: 289-306. [6] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499:316-319. [7] BERHE T A, SU W N, CHEN C H, et al. Organometal halide perovskite solar cells: degradation and stability[J]. Energy & Environmental Science, 2016, 9(2): 323-356. [8] ZHOU Y, LI X, LIN H. To be higher and stronger-metal oxide electron transport materials for perovskite solar cells[J]. Small, 2020, 16(15): e1902579. [9] NAMGUNG G, TA Q T H, YANG W, et al. Diffusion-driven Al-doping of ZnO nanorods and stretchable gas sensors made of doped ZnO nanorods/Ag nanowires bilayers[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1411-1419. [10] MANABENG M, MWANKEMWA B S, OCAYA R O, et al. A review of the impact of zinc oxide nanostructure morphology on perovskite solar cell performance[J]. Processes, 2022, 10(9): 1803. [11] TANG J F, SIE Y D, TSENG Z L, et al. Perovskite quantum dot-ZnO nanowire composites for ultraviolet-visible photodetectors[J]. ACS Applied Nano Materials, 2022, 5(5): 7237-7245. [12] SUBRAMANI K, SATHISH M. Facile synthesis of ZnO nanoflowers/reduced graphene oxide nanocomposite using zinc hexacyanoferrate for supercapacitor applications[J]. Materials Letters, 2019, 236: 424-427. [13] XIONG S, QIAN X F, ZHONG Z X, et al. Atomic layer deposition for membrane modification, functionalization and preparation: a review[J]. Journal of Membrane Science, 2022, 658: 120740. [14] PARK H H. Inorganic materials by atomic layer deposition for perovskite solar cells[J]. Nanomaterials, 2021, 11(1): 88. [15] YANG Y F, ZHANG Y J, BAI L Y, et al. Research progress of atomic layer deposition technology to improve the long-term stability of perovskite solar cells[J]. Journal of Materials Chemistry C, 2022, 10(3): 819-839. [16] CHO Y J, JEONG M J, PARK J H, et al. Charge transporting materials grown by atomic layer deposition in perovskite solar cells[J]. Energies, 2021, 14(4): 1156. [17] KRUSZYN'SKA J, OSTAPKO J, OZKAYA V, et al. Atomic layer engineering of aluminum-doped zinc oxide films for efficient and stable perovskite solar cells[J]. Advanced Materials Interfaces, 2022, 9(17): 2200575. [18] AHMAD S, ABBAS H, KHAN M B, et al. ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere[J]. Solar Energy, 2021, 216: 164-170. [19] CHEN C J, CHANDEL A, THAKUR D, et al. Ag modified bathocuproine: ZnO nanoparticles electron buffer layer based bifacial inverted-type perovskite solar cells[J]. Organic Electronics, 2021, 92: 106110. [20] LAILA I K R, MUFTI N, MARYAM S, et al. Synthesis and characterization of ZnO nanorods by hydrothermal methods and its application on perovskite solar cells[J]. Journal of Physics: Conference Series, 2018, 1093: 012012. [21] ZHONG M, CHAI L, WANG Y J. Core-shell structure of ZnO@TiO2 nanorod arrays as electron transport layer for perovskite solar cell with enhanced efficiency and stability[J]. Applied Surface Science, 2019, 464: 301-310. [22] MAKENALI M, KAZEMINEZHAD I, ROGHABADI F A, et al. Efficiency improvement of perovskite solar cells by charge transport balancing using length tunable ZnO nanorods and optimized perovskite morphology[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111206. [23] IRANDOOST R, SOLEIMANI-AMIRI S. Design and analysis of high efficiency perovskite solar cell with ZnO nanorods and plasmonic nanoparticles[J]. Optik, 2020, 202: 163598. [24] MAHMOOD K, KHALID A, MEHRAN M T. Nanostructured ZnO electron transporting materials for hysteresis-free perovskite solar cells[J]. Solar Energy, 2018, 173: 496-503. [25] MAKABLEH Y F, ALJAIUOSSI G, AL-ABED R. Comprehensive design analysis of electron transmission nanostructured layers of heterojunction perovskite solar cells[J]. Superlattices and Microstructures, 2019, 130: 390-395. [26] WANG D, WU C C, LUO W, et al. ZnO/SnO2 double electron transport layer guides improved open circuit voltage for highly efficient CH3NH3PbI3-based planar perovskite solar cells[J]. ACS Applied Energy Materials, 2018, 1(5): 2215-2221. [27] DEHGHAN M, BEHJAT A. Deposition of zinc oxide as an electron transport layer in planar perovskite solar cells by spray and SILAR methods comparable with spin coating[J]. RSC Advances, 2019, 9(36): 20917-20924. [28] ZHANG Y N, LI B, FU L, et al. MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells[J]. Electrochimica Acta, 2020, 330: 135280. [29] MIAO Y H, DU P, WANG Z Y, et al. Ultrasonic vibration imposed on nanoparticle-based ZnO film improves the performance of the ensuing perovskite solar cell[J]. Materials Research Express, 2018, 5(2): 026404. [30] SHALAN A E, EL-SHAZLY A N, RASHAD M M, et al. Tin-zinc-oxide nanocomposites (SZO) as promising electron transport layers for efficient and stable perovskite solar cells[J]. Nanoscale Advances, 2019, 1(7): 2654-2662. [31] NAJAFI M, DI GIACOMO F, ZHANG D, et al. Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers[J]. Small, 2018, 14(12): e1702775. [32] YUN S, GUO T, LI Y X, et al. Well-ordered vertically aligned ZnO nanorods arrays for high-performance perovskite solar cells[J]. Materials Research Bulletin, 2020, 130: 110935. [33] MAHMOOD K, HAMEED M, REHMAN F, et al. A multifunctional blade-coated ZnO seed layer for high-efficiency perovskite solar cells[J]. Applied Physics A, 2019, 125(2): 83. [34] CHANDRASEKHAR P S, DUBEY A, QIAO Q Q. High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer[J]. Solar Energy, 2020, 197: 78-83. [35] MAKENALI M, KAZEMINEZHAD I. Optimising ZnO seed layer to improve the growth of the dense, aligned ZnO nanorods as an electron transport layer in perovskite solar cell applications[J]. Materials Research Innovations, 2021, 25(7): 387-392. [36] ZHANG Y, ZHAI G M, GAO L W, et al. Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment[J]. Materials Science in Semiconductor Processing, 2020, 117: 105205. [37] CHEN J Q, CAI X, YANG D H, et al. Recent progress in stabilizing hybrid perovskites for solar cell applications[J]. Journal of Power Sources, 2017, 355: 98-133. [38] YANG J L, SIEMPELKAMP B D, MOSCONI E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO[J]. Chemistry of Materials, 2015, 27(12): 4229-4236. [39] NIU G D, LI W Z, MENG F Q, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Journal of Materials Chemistry A, 2014, 2(3): 705-710. [40] MA J, LIN Z H, GUO X, et al. Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%[J]. Solar RRL, 2019, 3(7): 1900096. [41] ZHANG Z Y, XU L, QI J J. Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO[J]. Chinese Physics B, 2021, 30(3): 038801. [42] YANG H, KWON H C, MA S, et al. Energy level-graded Al-doped ZnO protection layers for copper nanowire-based window electrodes for efficient flexible perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13824-13835. [43] SEOK H J, ALI A, SEO J H, et al. ZnO: Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells[J]. Science and Technology of Advanced Materials, 2019, 20(1): 389-400. [44] LIN L Y, JONES T W, YANG T C J, et al. Electron transport materials: inorganic electron transport materials in perovskite solar cells[J]. Advanced Functional Materials, 2021, 31(5): 2170032. [45] TAVAKOLI M M, TAVAKOLI R, YADAV P, et al. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2019, 7(2): 679-686. [46] CAO J, WU B H, CHEN R H, et al. Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation[J]. Advanced Materials, 2018, 30(11): 1705596. [47] YANG Z L, FAN Q, SHEN T, et al. Amine-passivated ZnO electron transport layer for thermal stability-enhanced perovskite solar cells[J]. Solar Energy, 2020, 204: 223-230. |