[1] KIROVSKAYA I A, FILATOVA T N, NOR P E. Multicomponent diamond-like semiconductors based on the InBV-CdS system: bulk and surface properties[J]. Semiconductors, 2021, 55(2): 228-233. [2] ZHANG X L, SUN W G, ZHANG L, et al. Temperature-dependent characteristics of Pt Schottky contacts on n-type HgInTe[J]. Semiconductor Science and Technology, 2008, 23(10): 105005. [3] MASLYANCHUK O L, KOSYACHENKO L A, GERMAN I I, et al. Electrical and optical properties of Hg3In2Te6 single crystals[J]. Physica Status Solidi C, 2009, 6(5): 1154-1157. [4] LEUTE V, SCHMIDTKE H M. Thermodynamics and kinetics of the quasibinary system Hg3-3kIn2kTe3—I. Investigations by X-ray diffraction and differential thermoanalysis[J]. Journal of Physics and Chemistry of Solids, 1988, 49(4): 409-420. [5] 王领航. Hg3-3xIn2xTe3晶体生长及性能表征[D]. 西安: 西北工业大学, 2008. WANG L H. Growth and characterization of Hg3-3xIn2xTe3 crystal[D]. Xi’an: Northwestern Polytechnical University, 2008 (in Chinese). [6] 郑 璇. Hg3In2Te6晶体生长、性能表征及电极制备[D]. 西安: 西北工业大学, 2013. ZHENG X.Crystal growth, performance characterization and electrode preparation of Hg3In2Te6 [D]. Xi’an: Northwestern Polytechnical University, 2013 (in Chinese). [7] MALIK A I, VIEIRA M, FERNANDES M, et al. Near-infrared photodetectors based on a HgInTe-semiconductor compound[C]//SPIE Proceedings, Photodetectors: Materials and Devices IV. San Jose, CA. SPIE, 1999. [8] KOSYACHENKO L A, PARANCHICH Y S, MAKOGONENKO V N, et al. Electrical performance of HgInTe surface-barrier photodiodes[J]. Technical Physics, 2003, 48(5): 647-650. [9] KOSYACHENKO L A, RARENKO I M, SKLYARCHUK E F, et al. Electrical characteristics of the ITO/HgInTe photodiodes[J]. Semiconductors, 2006, 40(5): 554-557. [10] 张小雷, 孙维国, 鲁正雄, 等. Pt/HgInTe肖特基红外探测器的抗辐照特性[J]. 红外与激光工程, 2009, 38(3): 406-409. ZHANG X L, SUN W G, LU Z X, et al. Anti-irradiation characteristics of Pt/HgInTe Schottky infrared detectors[J]. Infrared and Laser Engineering, 2009, 38(3): 406-409 (in Chinese). [11] SUN J, FU L, WANG Y Y, et al. Effect of Ar+ ion etching treatment on the surface work function of Hg3In2Te6 wafer[J]. Journal of Electron Spectroscopy and Related Phenomena, 2013, 187: 49-52. [12] SUN J, FU L, WANG Y Y, et al. Study of Au/Hg3In2Te6 interface by synchrotron radiation photoemission spectroscopy[J]. Journal of Applied Physics, 2013, 114(8): 083719. [13] SUN J, FU L, LIU H W, et al. On the morphology and crystallography of Hg5In2Te8 precipitation in Hg3In2Te6[J]. Journal of Alloys and Compounds, 2014, 601: 298-306. [14] SUN J, FU L, LIU H W, et al. Interpretation of the vacancy-ordering controlled growth morphology of Hg5In2Te8 precipitates in Hg3In2Te6 single crystals by TEM observation and crystallographic calculation[J]. Journal of Alloys and Compounds, 2015, 622: 206-212. [15] LI Y P, FU L, WANG X Z, et al. Effect of passivation on the electrical properties of Au/Hg3In2Te6 Schottky contact[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(9): 7121-7124. [16] LI Y P, FU L, SUN J. The modification of electrical properties of Au/n-Hg3In2Te6 Schottky contact by the introduction of ITO interlayer[J]. Current Applied Physics, 2016, 16(6): 623-627. [17] SHAW D, CAPPER P. Extrinsic doping[M]//Mercury Cadmium Telluride. Chichester, UK: John Wiley & Sons, Ltd, 2010: 317-337. [18] WEI S H, ZHANG S B. Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe[J]. Physical Review B, 2002, 66(15): 155211. [19] SUN L Z, CHEN X S, ZHAO J J, et al. Electronic properties and chemical trends of the arsenic in situ impurities in Hg1-xCdxTe: first-principles study[J]. Physical Review B, 2007, 76(4): 045219. [20] HAN J L, SUN L Z, QU X D, et al. Electronic properties of the Au impurity in Hg0.75Cd0.25Te: first-principles study[J]. Physica B: Condensed Matter, 2009, 404(1): 131-137. [21] BHATTACHARYA S K, KSHIRSAGAR A. Ab initio calculations of structural and electronic properties of CdTe clusters[J]. Physical Review B, 2007, 75(3): 035402. [22] 熊智慧, 李志西, 尹亚庆, 等. Fe掺杂α-Bi2O3光电性质的第一性原理研究[J]. 人工晶体学报, 2021, 50(2): 278-282. XIONG Z H, LI Z X, YIN Y Q, et al. First-principles study on electronic and optical properties of Fe doped α-Bi2O3[J]. Journal of Synthetic Crystals, 2021, 50(2): 278-282 (in Chinese). [23] 谭 心, 张博晨, 任 元, 等. Er掺杂金刚石缺陷的第一性原理研究[J]. 人工晶体学报, 2021, 50(6): 1023-1028+1048. TAN X, ZHANG B C, REN Y, et al. First-principle study of Er-doped diamond defects[J]. Journal of Synthetic Crystals, 2021, 50(6): 1023-1028+1048 (in Chinese). [24] SPENCER P M. The semiconducting properties of HgTe-In2Te3 alloys[J]. British Journal of Applied Physics, 1964, 15(6): 625-632. [25] SHI S X, ZHU L G, JIA L N, et al. Ab-initio study of alloying effects on structure stability and mechanical properties of α-Nb5Si3[J]. Computational Materials Science, 2015, 108: 121-127. [26] GHARAATI A, ESMAEILI F. Bandgap structure and density of states of two-dimensional magnetized plasma photonic crystals[J]. International Journal of Modern Physics B, 2022, 36(20): 2250124. [27] NASAR A, SHAMSUDDIN M. Thermodynamic investigations of HgTe[J]. Journal of the Less Common Metals, 1990, 161(1): 87-92. [28] RABENOK E V, GALANOVICH M V, NOVIKOV G F, et al. Effect of self-compensation on the electron lifetime in gallium-doped cadmium telluride[J]. Semiconductors, 2009, 43(7): 846-851. |