[1] SUGANUMA K. Wide Bandgap power semiconductor packaging: materials, components, and reliability[M]. Duxford, United Kingdom: Woodhead Publishing is an imprint of Elsevier, 2018 [2] MITTAL A. Energy efficiency enabled by power electronics[C]//2010 International Electron Devices Meeting. December 6-8, 2010, San Francisco, CA, USA. IEEE, 2011: 1.2.1-1.2.7. [3] OHASHI H. Power devices now and future, strategy of Japan[C]//2012 24th International Symposium on Power Semiconductor Devices and ICs. June 3-7, 2012, Bruges, Belgium. IEEE, 2012: 9-12. [4] BOLOTNIKOV A, LOSEE P, MATOCHA K, et al. 3.3kV SiC MOSFETs designed for low on-resistance and fast switching[C]//2012 24th International Symposium on Power Semiconductor Devices and ICs. June 3-7, 2012, Bruges, Belgium. IEEE, 2012: 389-392. [5] DUSSAIGNE A, GONSCHOREK M, MALINVERNI M, et al. High-mobility AlGaN/GaN two-dimensional electron gas heterostructure grown on (111) single crystal diamond substrate[J]. Japanese Journal of Applied Physics, 2010, 49(6): 061001. [6] ALOMARI M, DUSSAIGNE A, MARTIN D, et al. AlGaN/GaN HEMT on (111) single crystalline diamond[J]. Electronics Letters, 2010, 46(4): 299. [7] WEI L, KUO P K, THOMAS R L, et al. Thermal conductivity of isotopically modified single crystal diamond[J]. Physical Review Letters, 1993, 70(24): 3764-3767. [8] 顾长志, 金曾孙, 吕宪义, 等. 使用金刚石膜热沉的半导体激光器特性研究[J]. 半导体学报, 1997, 18(11): 840-843. GU C Z, JIN Z S, LU X Y, et al. Semiconductor laser fabricated with heat sink of diamond film[J]. Chinese Journal of Semiconductors, 1997, 18(11): 840-843 (in Chinese). [9] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664. [10] 戴 玮, 李嘉强, 曹 剑, 等. CVD金刚石热沉封装高功率半导体激光器的热特性[J]. 光电子·激光, 2019, 30(3): 227-233. DAI W, LI J Q, CAO J, et al. Thermal performance of high power semiconductor lasers packaged on CVD diamond heatsink[J]. Journal of Optoelectronics·Laser, 2019, 30(3): 227-233 (in Chinese). [11] VISSER E P, VERSTEEGEN E H, VAN ENCKEVORT W J P. Measurement of thermal diffusion in thin films using a modulated laser technique: application to chemical-vapor-deposited diamond films[J]. Journal of Applied Physics, 1992, 71(7): 3238-3248. [12] GRAEBNER J E, RALCHENKO V G, SMOLIN A A, et al. Thermal conductivity of thin diamond films grown from d.c. discharge[J]. Diamond and Related Materials, 1996, 5(6/7/8): 693-698. [13] GAAL P S, THERMITUS M A, STROE D E. Thermal conductivity measurements using the flash method[J]. Journal of Thermal Analysis and Calorimetry, 2004, 78(1): 185-189. [14] BHARDWAJ R G, KHARE N. Review: 3-ω technique for thermal conductivity measurement—contemporary and advancement in its methodology[J].International Journal of Thermophysics, 2022, 43(9): 1-32. [15] CHERNYKH M Y, ANDREEV A A, EZUBCHENKO I S, et al. GaN-based heterostructures with CVD diamond heat sinks: a new fabrication approach towards efficient electronic devices[J]. Applied Materials Today, 2022, 26: 101338. [16] PÉRICHON S, LYSENKO V, REMAKI B, et al. Measurement of porous silicon thermal conductivity by micro-Raman scattering[J]. Journal of Applied Physics, 1999, 86(8): 4700-4702. [17] ALERS P, HINTERMANN H E, HAYWARD I. Correlations between Raman scattering and thermal expansion behavior for CVD and natural diamond[J]. Thin Solid Films, 1995, 259(1): 14-17. [18] HERCHEN H, CAPPELLI M A. First-order Raman spectrum of diamond at high temperatures[J]. Physical Review B, Condensed Matter, 1991, 43(14): 11740-11744. [19] GRIMSDITCH M, ZOUBOULIS E S, POLIAN A. Elastic constants of boron nitride[J]. Journal of Applied Physics, 1994, 76(2): 832-834. [20] SOLIN S A, RAMDAS A K. Raman spectrum of diamond[J]. Physical Review B, 1970, 1(4): 1687-1698. [21] CUI J B, AMTMANN K, RISTEIN J, et al. Noncontact temperature measurements of diamond by Raman scattering spectroscopy[J]. Journal of Applied Physics, 1998, 83(12): 7929-7933. [22] KONG J F, YE H B, ZHANG D M, et al. Temperature-dependent Raman scattering in N-In codoped p-type ZnO thin films[J]. Journal of Physics D: Applied Physics, 2007, 40(23): 7471-7474. [23] TANG H, HERMAN I P. Raman microprobe scattering of solid silicon and germanium at the melting temperature[J]. Physical Review B, Condensed Matter, 1991, 43(3): 2299-2304. [24] BORER W J, MITRA S S, NAMJOSHI K V. Line shape and temperature dependence of the first order Raman spectrum of diamond[J]. Solid State Communications, 1971, 9(16): 1377-1381. [25] HARUNA K, MAETA H, OHASHI K, et al. Thermal expansion coefficient of synthetic diamond single crystal at low temperatures[J]. Japanese Journal of Applied Physics, 1992, 31(8R): 2527. [26] SUROVTSEV N V, KUPRIYANOV I N. Temperature dependence of the Raman line width in diamond: revisited[J]. Journal of Raman Spectroscopy, 2015, 46(1): 171-176. [27] LI W S, SHEN Z X, FENG Z C, et al. Temperature dependence of Raman scattering in hexagonal gallium nitride films[J]. Journal of Applied Physics, 2000, 87(7): 3332-3337. [28] BERGMAN L, ALEXSON D, MURPHY P L, et al. Raman analysis of phonon lifetimes in AlN and GaN of wurtzite structure[J]. Physical Review B, 1999, 59(20): 12977-12982. [29] BEECHEM T, GRAHAM S. Temperature and doping dependence of phonon lifetimes and decay pathways in GaN[J]. Journal of Applied Physics, 2008, 103(9): 093507. |