[1] ULUSALOĞLU A C, ATICI T, ERMUTLU C, et al. Evaluation of titanium release from titanium alloy implants in patients with spinal instrumentation[J]. The Journal of International Medical Research, 2021, 49(1): 300060520984931. [2] WANG H, ZHAO B J, LIU C K, et al. A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting[J]. PLoS One, 2016, 11(7): e0158513. [3] PLEKHOVA N G, LYAPUN I N, DROBOT E I, et al. Functional state of mesenchymal stem cells upon exposure to bioactive coatings on titanium alloys[J]. Bulletin of Experimental Biology and Medicine, 2020, 169(1): 147-156. [4] GNEDENKOV S V, SINEBRYUKHOV S L, PUZ A V, et al. In vivo study of osteogenerating properties of calcium-phosphate coating on titanium alloy Ti-6Al-4V[J]. Bio-Medical Materials and Engineering, 2016, 27(6): 551-560. [5] RIAL R, GONZÁLEZ-DURRUTHY M, LIU Z, et al. Advanced materials based on nanosized hydroxyapatite[J]. Molecules, 2021, 26(11): 3190. [6] WANG H N, LI Y B, ZUO Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials, 2007, 28(22): 3338-3348. [7] SIMA F, SOCOL G, AXENTE E, et al. Biocompatible and bioactive coatings of Mn2+-doped β-tricalcium phosphate synthesized by pulsed laser deposition[J]. Applied Surface Science, 2007, 254(4): 1155-1159. [8] PETRAKOVA N V, TETERINA A Y, MIKHEEVA P V, et al. In vitro study of octacalcium phosphate behavior in different model solutions[J]. ACS Omega, 2021, 6(11): 7487-7498. [9] ORYAN A, ALIDADI S, BIGHAM-SADEGH A. Dicalcium phosphate anhydrous: an appropriate bioceramic in regeneration of critical-sized radial bone defects in rats[J]. Calcified Tissue International, 2017, 101(5): 530-544. [10] ZHANG Y X, LIN T, MENG H Y, et al. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo[J]. Journal of Orthopaedic Translation, 2022, 33: 13-23. [11] WENG W J, BAPTISTA J L. Sol-gel derived porous hydroxyapatite coatings[J]. Journal of Materials Science: Materials in Medicine, 1998, 9(3): 159-163. [12] WANG J, CHAO Y L, WAN Q B, et al. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition[J]. Acta Biomaterialia, 2009, 5(5): 1798-1807. [13] DYSHLOVENKO S, PAWLOWSKI L, PATEYRON B, et al. Modelling of plasma particle interactions and coating growth for plasma spraying of hydroxyapatite[J]. Surface and Coatings Technology, 2006, 200(12/13): 3757-3769. [14] BOCCACCINI A R, KEIM S, MA R, et al. Electrophoretic deposition of biomaterials[J]. Journal of the Royal Society, Interface, 2010, 7(5): S581-S613. [15] WU Y S, CHANG W K, JOU M. Hydroxyapatite synthesised from nanosized calcium carbonate via hydrothermal method[J]. Materials Technology, 2012, 27(1): 119-123. [16] LIU D X, SAVINO K, YATES M Z. Coating of hydroxyapatite films on metal substrates by seeded hydrothermal deposition[J]. Surface and Coatings Technology, 2011, 205(16): 3975-3986. [17] YOU J C, WU S Q, ZHAO C Q, et al. Morphological evolution and bonding strength of a monetite coating on the Ti-6Al-4V substrate via hydrothermal treatment[J]. Materials Technology, 2022, 37(8): 849-857. [18] ARCE H, MONTERO M L, SÁENZ A, et al. Effect of pH and temperature on the formation of hydroxyapatite at low temperatures by decomposition of a Ca-EDTA complex[J]. Polyhedron, 2004, 23(11): 1897-1901. [19] SCHWARTZ Z, BOYAN B D. Underlying mechanisms at the bone-biomaterial interface[J]. Journal of Cellular Biochemistry, 1994, 56(3): 340-347. [20] NAKAMURA M, HORI N, ANDO H, et al. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability[J]. Materials Science and Engineering: C, 2016, 62: 283-292. [21] SU Y Y, LI K Z, ZHANG L L, et al. Calcium phosphorus bio-coating on carbon/carbon composites: preparation, shear strength and bioactivity[J]. Applied Surface Science, 2017, 419: 503-511. [22] XU L P, PAN F, YU G N, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy[J]. Biomaterials, 2009, 30(8): 1512-1523. [23] NISHIMURA T, OGINO Y, AYUKAWA Y, et al. Influence of the wettability of different titanium surface topographies on initial cellular behavior[J]. Dental Materials Journal, 2018, 37(4): 650-658. [24] ADVINCULA M C, RAHEMTULLA F G, ADVINCULA R C, et al. Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide[J]. Biomaterials, 2006, 27(10): 2201-2212. [25] LI Q Q, BAO X G, SUN J E, et al. Fabrication of superhydrophobic composite coating of hydroxyapatite/stearic acid on magnesium alloy and its corrosion resistance, antibacterial adhesion[J]. Journal of Materials Science, 2021, 56(8): 5233-5249. [26] SASIKUMAR Y, KUMAR A M, BABU R S, et al. Biocompatible hydrophilic brushite coatings on AZX310 and AM50 alloys for orthopaedic implants[J]. Journal of Materials Science: Materials in Medicine, 2018, 29(8): 123. [27] ZHU R H, YU R B, YAO J X, et al. Morphology control of hydroxyapatite through hydrothermal process[J]. Journal of Alloys and Compounds, 2008, 457(1/2): 555-559. [28] ZOU Z Y, LIU X G, CHEN L, et al. Dental enamel-like hydroxyapatite transformed directly from monetite[J]. Journal of Materials Chemistry, 2012, 22(42): 22637-22641. [29] HAM D, KANG H C. Characterization of dicalcium phosphate anhydrous crystals synthesized by using a hydrothermal process[J]. Journal of the Korean Physical Society, 2020, 76(11): 971-975. [30] HE D H, DU J, LIU P, et al. Influence of EDTA-2Na on the hydroxyapatite coating deposited by hydrothermal-electrochemical method on Ti6Al4V surface[J]. Surface and Coatings Technology, 2019, 365: 242-247. [31] LAK A, MAZLOUMI M, MOHAJERANI M, et al. Self-assembly of dandelion-like hydroxyapatite nanostructures via hydrothermal method[J]. Journal of the American Ceramic Society, 2008, 91(10): 3292-3297. [32] HILBERT R, TÖDHEIDE K, FRANCK E U. PVT data for water in the ranges 20 to 600 ℃ and 100 to 4000 bar[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1981, 85(9): 636-643. [33] MARSHALL W L, FRANCK E U. Ion product of water substance, 0-1 000 ℃, 1-10, 000 bars new international formulation and its background[J]. Journal of Physical and Chemical Reference Data, 1981, 10(2): 295-304. |