[1] 陈锡泼. 镁合金熔炉温控系统的研究与开发[D]. 杭州: 浙江工业大学, 2009. CHEN X P. Research and development of temperature control system for magnesium alloy melting furnace[D]. Hangzhou: Zhejiang University of Technology, 2009 (in Chinese). [2] 丁文江. 镁合金科学与技术[M]. 北京: 科学出版社, 2007. DING W J. The technology of magnesium alloy[M]. Beijing: Science Press, 2007 (in Chinese). [3] POLLOCK T M. Materials science. Weight loss with magnesium alloys[J]. Science, 2010, 328(5981): 986-987. [4] 明 玥, 游国强, 姚繁锦, 等. 金属镁的氧化及氧化机理研究进展[J]. 材料导报, 2021, 35(19): 19134-19141. MING Y, YOU G Q, YAO F J, et al. Research progress on oxidation and oxidation mechanism of magnesium[J]. Materials Reports, 2021, 35(19): 19134-19141 (in Chinese). [5] SCHRÖDER E, FASEL R, KIEJNA A. O adsorption and incipient oxidation of the Mg(0001) surface[J]. Physical Review B, 2004, 69(11): 115431. [6] 潘 娜, 卫英慧, 侯利锋, 等. AZ61镁合金高温氧化过程[J]. 材料热处理学报, 2013, 34(3): 67-72. PAN N, WEI Y H, HOU L F, et al. Oxidation process of AZ61 magnesium alloy at high temperature[J]. Transactions of Materials and Heat Treatment, 2013, 34(3): 67-72 (in Chinese). [7] PILLING N B, BEDWORTH R E. The oxidation of metal at high temperature[J]. Journal of Institute of Metals, 1923, 29: 529-591. [8] CZERWINSKI F. The reactive element effect on high-temperature oxidation of magnesium[J]. International Materials Reviews, 2015, 60(5): 264-296. [9] GULBRANSEN E A. The oxidation and evaporation of magnesium at temperatures from 400 ℃ to 500 ℃[J]. Transactions of the Electrochemical Society, 1945, 87(1): 589. [10] AYDIN D S, BAYINDIR Z, PEKGULERYUZ M O. The high temperature oxidation behavior of Mg-Nd alloys. Part II: the effect of the two-phase microstructure on the on-set of oxidation and on oxide morphology[J]. Journal of Alloys and Compounds, 2014, 584: 558-565. [11] 范烨力, 王 伟. 镁合金表面制备Al2O3/Ni复合涂层抗腐蚀性的研究[J]. 人工晶体学报, 2017, 46(9): 1809-1813+1817. FAN Y L, WANG W. Corrosion resistance of Al2O3/Ni composite coating prepared on Mg alloy surface[J]. Journal of Synthetic Crystals, 2017, 46(9): 1809-1813+1817 (in Chinese). [12] CZERWINSKI F. The oxidation behaviour of an AZ91D magnesium alloy at high temperatures[J]. Acta Materialia, 2002, 50(10): 2639-2654. [13] CZERWINSKI F. Oxidation characteristics of magnesium alloys[J]. JOM, 2012, 64(12): 1477-1483. [14] SCHRÖDER E, FASEL R, KIEJNA A. Mg(0001) surface oxidation: a two-dimensional oxide phase[J]. Physical Review B, 2004, 69(19): 193405. [15] FRANCIS M F, TAYLOR C D. First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: oxygen chemisorption to Mg(0001) and thermodynamic stability[J]. Physical Review B, 2013, 87(7): 075450. [16] SUN Y, WANG J M, GUO J X, et al. Atomic-scale oxidation mechanisms of single-crystal magnesium[J]. Nanoscale, 2019, 11(48): 23346-23356. [17] ZHENG H, WU S J, SHENG H P, et al. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation[J]. Applied Physics Letters, 2014, 104(14): 141906. [18] ZHOU G W, LUO L L, LI L, et al. Step-edge-induced oxide growth during the oxidation of Cu surfaces[J]. Physical Review Letters, 2012, 109(23): 235502. [19] KANTOROVICH L N, GILLAN M J. Adsorption of atomic and molecular oxygen on the MgO (001) surface[J]. Surface Science, 1997, 374(1/2/3): 373-386. [20] EGERTON R F, LI P, MALAC M. Radiation damage in the TEM and SEM[J]. Micron, 2004, 35(6): 399-409. [21] KOOI B J, PALASANTZAS G, DE HOSSON J T M. Gas-phase synthesis of magnesium nanoparticles: a high-resolution transmission electron microscopy study[J]. Applied Physics Letters, 2006, 89(16): 161914. [22] BIERMAN M J, LAU Y K, KVIT A V, et al. Dislocation-driven nanowire growth and Eshelby twist[J]. Science, 2008, 320(5879): 1060-1063. [23] CAO F, ZHENG H, JIA S F, et al. Atomistic observation of phase transitions in calcium sulfates under electron irradiation[J]. The Journal of Physical Chemistry C, 2015, 119(38): 22244-22248. |