人工晶体学报 ›› 2023, Vol. 52 ›› Issue (5): 732-745.
彭博1,2, 李奇1,2, 张舒淼1,2, 樊叔维1,2, 王若铮1,2, 王宏兴1,2
收稿日期:
2023-03-22
出版日期:
2023-05-15
发布日期:
2023-06-05
通信作者:
王宏兴,博士,教授。E-mail:hxwangcn@mail.xjtu.edu.cn
作者简介:
彭 博(1999—),男,湖南省人,硕士研究生。E-mail:flower1014@stu.xjtu.edu.cn
基金资助:
PENG Bo1,2, LI Qi1,2, ZHANG Shumiao1,2, FAN Shuwei1,2, WANG Ruozheng1,2, WANG Hongxing1,2
Received:
2023-03-22
Online:
2023-05-15
Published:
2023-06-05
摘要: 金刚石具有宽带隙(5.47 eV)、高载流子迁移率(空穴3 800 cm2/(V·s)、电子4 500 cm2/(V·s))、高热导率(22 W·cm-1·K-1)、高临界击穿场强(>10 MV/cm),以及最优的Baliga器件品质因子,使得金刚石半导体器件在高温、高频、高功率,以及抗辐照等极端条件下有良好的应用前景。随着单晶金刚石CVD生长技术和p型掺杂的突破,以硼掺杂金刚石为主的肖特基二极管(SBD)的研究广泛展开。本文详细介绍了金刚石SBD的工作原理,探讨了高掺杂p型厚膜、低掺杂漂移区p型薄膜的生长工艺,研究了不同金属与金刚石形成欧姆接触、肖特基接触的条件,分析了横向、垂直、准垂直器件结构的制备工艺,以及不同结构对SBD正向、反向、击穿特性的影响,阐述了场板、钝化层、边缘终端等器件结构对SBD内部电场的调制作用,进而提升器件反向击穿电压,最后总结了金刚石SBD的应用前景及面临的挑战。
中图分类号:
彭博, 李奇, 张舒淼, 樊叔维, 王若铮, 王宏兴. 金刚石肖特基二极管的研究进展[J]. 人工晶体学报, 2023, 52(5): 732-745.
PENG Bo, LI Qi, ZHANG Shumiao, FAN Shuwei, WANG Ruozheng, WANG Hongxing. Research Progress of Diamond Schottky Barrier Diodes[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 732-745.
[1] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672. [2] 赵正平. 超宽禁带半导体金刚石功率电子学研究的新进展[J]. 半导体技术, 2021, 46(1): 1-14. ZHAO Z P. New research progress in ultra wide bandgap semiconductor diamond power electronics[J]. Semiconductor Technology, 2021, 46(1): 1-14 (in Chinese). [3] BERNHARD D. Low-Pressure Synthetic Diamond[M]. Berlin: Springer, 1998: 331. [4] SHENAI K, SCOTT R S, BALIGA B J. Optimum semiconductors for high-power electronics[J]. IEEE Transactions on Electron Devices, 1989, 36(9): 1811-1823. [5] ALEKSOV A, KUBOVIC M, KAEB N, et al. Diamond field effect transistors: concepts and challenges[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 391-398. [6] DENISENKO A, KOHN E. Diamond power devices. Concepts and limits[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 491-498. [7] ARKHIPOVA E A, DEMIDOV E V, DROZDOV M N, et al. Ohmic contacts to CVD diamond with boron-doped delta layers[J]. Semiconductors, 2019, 53(10): 1348-1352. [8] ACHARD J, ARAUJO D, ARNAULT J C, et al. Power electronics device applications of diamond semiconductors[M]. Cambridge: Woodhead Publishing, 2018 [9] TERAJI T, ISOYA J, WATANABE K, et al. Homoepitaxial diamond chemical vapor deposition for ultra-light doping[J]. Materials Science in Semiconductor Processing, 2017, 70: 197-202. [10] BARJON J, CHIKOIDZE E, JOMARD F, et al. Homoepitaxial boron-doped diamond with very low compensation[J]. Physica Status Solidi (a), 2012, 209(9): 1750-1753. [11] YAP C M, ANSARI K, XIAO S, et al. Properties of near-colourless lightly boron doped CVD diamond[J]. Diamond and Related Materials, 2018, 88: 118-122. [12] ISSAOUI R, ACHARD J, WILLIAM L, et al. Thick and widened high quality heavily boron doped diamond single crystals synthetized with high oxygen flow under high microwave power regime[J]. Diamond and Related Materials, 2019, 94: 88-91. [13] 王若铮, 闫秀良, 彭 博, 等. 高质量硼掺杂单晶金刚石同质外延及电学性质研究[J]. 人工晶体学报, 2022, 51(5): 893-900. WANG R Z, YAN X L, PENG B, et al. Homoepitaxial boron doped single crystal diamond and its electrical properties[J]. Journal of Synthetic Crystals, 2022, 51(5): 893-900 (in Chinese). [14] 吴 超, 马志斌, 严 垒, 等. CVD单晶金刚石的研究进展[J]. 金刚石与磨料磨具工程, 2014, 34(1): 57-63. WU C, MA Z B, YAN L, et al. Development of CVD single crystal diamond[J]. Diamond & Abrasives Engineering, 2014, 34(1): 57-63 (in Chinese). [15] TERAJI T. High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition[J]. Journal of Applied Physics, 2015, 118(11): 115304. [16] WANG R Z, PENG B, BAI H, et al. Morphology, defects and electrical properties of boron-doped single crystal diamond under various oxygen concentration[J]. Materials Letters, 2022, 322: 132345. [17] TANG L, YUE R F, WANG Y. N-type B-S co-doping and S doping in diamond from first principles[J]. Carbon, 2018, 130: 458-465. [18] LIU D Y, HAO L C, CHEN Z A, et al. Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition[J]. Applied Physics Letters, 2020, 117(2): 022101. [19] BOUSSADI A, TALLAIRE A, BRINZA O, et al. Thick heavily boron doped CVD diamond films homoepitaxially grown on (111)-oriented substrates[J]. Diamond and Related Materials, 2017, 79: 108-111. [20] MORTET V, PERNOT J, JOMARD F, et al. Properties of boron-doped epitaxial diamond layers grown on (110) oriented single crystal substrates[J]. Diamond and Related Materials, 2015, 53: 29-34. [21] TALLAIRE A, VALENTIN A, MILLE V, et al. Growth of thick and heavily boron-doped (113)-oriented CVD diamond films[J]. Diamond and Related Materials, 2016, 66: 61-66. [22] TAYLOR A, BALUCHOVÁ S, FEKETE L, et al. Growth and comparison of high-quality MW PECVD grown B doped diamond layers on{118}, {115} and {113}single crystal diamond substrates[J]. Diamond and Related Materials, 2022, 123: 108815. [23] 王艳丰, 王宏兴. MPCVD单晶金刚石生长及其电子器件研究进展[J]. 人工晶体学报, 2020, 49(11): 2139-2152. WANG Y F, WANG H X. Research progress of MPCVD single crystal diamond growth and diamond electronic devices[J]. Journal of Synthetic Crystals, 2020, 49(11): 2139-2152 (in Chinese). [24] RHODERICK E H, ROTHWARF A. Metal-semiconductor contacts[J]. Physics Today, 1979, 32(5): 66-71. [25] 赵化彬. AlGaN/GaN肖特基二极管电学及光电特性研究[D]. 西安: 西安电子科技大学, 2020. ZHAO H B. Study on electrical and photoelectric characteristics of AlGaN/GaN Schottky diode[D]. Xi’an: Xidian University, 2020 (in Chinese). [26] KONO S, TERAJI T, KODAMA H, et al. Direct determination of the barrier height of Ti-based ohmic contact on p-type diamond (001)[J]. Diamond and Related Materials, 2015, 60: 117-122. [27] WANG Y Y, LIU X Q, ZHEN C M, et al. Ohmic contacts and interface properties of Au/Ti/p-diamond prepared by r.f. sputtering[J]. Surface and Interface Analysis, 2000, 29(7): 478-481. [28] HOFF H A, WAYTENA G L, VOLD C L, et al. Ohmic contacts to semiconducting diamond using a Ti/Pt/Au trilayer metallization scheme[J]. Diamond and Related Materials, 1996, 5(12): 1450-1456. [29] MANIFOLD S A, KLEMENCIC G, THOMAS E L H, et al. Contact resistance of various metallisation schemes to superconducting boron doped diamond between 1.9 and 300 K[J]. Carbon, 2021, 179: 13-19. [30] ZHEN C M, WANG X Q, WU X C, et al. Au/p-diamond ohmic contacts deposited by RF sputtering[J]. Applied Surface Science, 2008, 255(5): 2916-2919. [31] LI F N, ZHANG J W, WANG X L, et al. Barrier heights of Au on diamond with different terminations determined by X-ray photoelectron spectroscopy[J]. Coatings, 2017, 7(7): 88. [32] WANG W, HU C, LI F N, et al. Palladium Ohmic contact on hydrogen-terminated single crystal diamond film[J]. Diamond and Related Materials, 2015, 59: 90-94. [33] DAS K, VENKATESAN V, HUMPHREYS T P. Ohmic contacts on diamond by B ion implantation and TiC-Au and TaSi2-Au metallization[J]. Journal of Applied Physics, 1994, 76(4): 2208-2212. [34] ZHAO D, LI F N, LIU Z C, et al. Effects of rapid thermal annealing on the contact of tungsten/p-diamond[J]. Applied Surface Science, 2018, 443: 361-366. [35] ZHAO D, LIU Z C, ZHANG X F, et al. Analysis of diamond pseudo-vertical Schottky barrier diode through patterning tungsten growth method[J]. Applied Physics Letters, 2018, 112(9): 092102. [36] KONÉ S, SCHNEIDER H, ISOIRD K, et al. An assessment of contact metallization for high power and high temperature diamond Schottky devices[J]. Diamond and Related Materials, 2012, 27/28: 23-28. [37] TERAJI T, KOIDE Y, ITO T. Schottky barrier height and thermal stability of p-diamond (100) Schottky interfaces[J]. Thin Solid Films, 2014, 557: 241-248. [38] PIÑERO J C, ARAÚJO D, FIORI A, et al. Atomic composition of WC/and Zr/O-terminated diamond Schottky interfaces close to ideality[J]. Applied Surface Science, 2017, 395: 200-207. [39] TERAJI T, GARINO Y, KOIDE Y, et al. Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment[J]. Journal of Applied Physics, 2009, 105(12): 126109. [40] TRAORÉ A, MURET P, FIORI A, et al. Zr/oxidized diamond interface for high power Schottky diodes[J]. Applied Physics Letters, 2014, 104(5): 052105. [41] POLYAKOV A, SMIRNOV N, TARELKIN S, et al. Electrical properties of diamond platinum vertical Schottky barrier diodes[J]. Materials Today: Proceedings, 2016, 3: S159-S164. [42] UEDA K, KAWAMOTO K, SOUMIYA T, et al. High-temperature characteristics of Ag and Ni/diamond Schottky diodes[J]. Diamond and Related Materials, 2013, 38: 41-44. [43] LI F N, LIU J W, ZHANG J W, et al. Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 2016, 370: 496-500. [44] IKEDA K, UMEZAWA H, RAMANUJAM K, et al. Thermally stable Schottky barrier diode by Ru/diamond[J]. Applied Physics Express, 2009, 2: 011202. [45] HU C, LIU Z C, ZHANG J W, et al. Diamond Schottky barrier diode with fluorine- and oxygen-termination[J]. MRS Advances, 2016, 1(16): 1125-1130. [46] ZHAO D, HU C, LIU Z C, et al. Diamond MIP structure Schottky diode with different drift layer thickness[J]. Diamond and Related Materials, 2017, 73: 15-18. [47] GILDENBLAT G S, GROT S A, WRONSKI C R, et al. Electrical characteristics of Schottky diodes fabricated using plasma assisted chemical vapor deposited diamond films[J]. Applied Physics Letters, 1988, 53(7): 586-588. [48] GILDENBLAT G S, GROT S A, WRONSKI C R, et al. Schottky diodes with thin film diamond base[C]//Technical Digest, International Electron Devices Meeting. December 11-14, 1988, San Francisco, CA, USA. IEEE, 2002: 626-629. [49] GILDENBLAT G S, GROT S A, HATFIELD C W, et al. High-temperature Schottky diodes with thin-film diamond base[J]. IEEE Electron Device Letters, 1990, 11(9): 371-372. [50] EBERT W, VESCAN A, BORST T H, et al. Epitaxial diamond Schottky barrier diode with on/off current ratios in excess of 107 at high temperatures[C]//Proceedings of 1994 IEEE International Electron Devices Meeting. December 11-14, 1994, San Francisco, CA, USA. IEEE, 2002: 419-422. [51] PEARCE S R J, HENLEY S J, CLAEYSSENS F, et al. Production of nanocrystalline diamond by laser ablation at the solid/liquid interface[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 661-665. [52] TWITCHEN D J, WHITEHEAD A J, COE S E, et al. High-voltage single-crystal diamond diodes[J]. IEEE Transactions on Electron Devices, 2004, 51(5): 826-828. [53] IKEDA K, UMEZAWA H, SHIKATA S. Edge termination techniques for p-type diamond Schottky barrier diodes[J]. Diamond and Related Materials, 2008, 17(4/5): 809-812. [54] VOLPE P N, MURET P, PERNOT J, et al. High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer[J]. Physica Status Solidi (a), 2010, 207(9): 2088-2092. [55] REINKE P, BENKHELIFA F, KIRSTE L, et al. Influence of different surface morphologies on the performance of high-voltage, low-resistance diamond Schottky diodes[J]. IEEE Transactions on Electron Devices, 2020, 67(6): 2471-2477. [56] SHIGEMATSU S, OISHI T, SEKI Y, et al. Schottky barrier diodes fabricated on high-purity type-IIa CVD diamond substrates using an all-ion-implantation process[J]. Japanese Journal of Applied Physics, 2021, 60(5): 050903. [57] WANG J, ZHAO D, SHAO G Q, et al. Fabrication of dual-barrier planar structure diamond Schottky diodes by rapid thermal annealing[J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1176-1180. [58] WANG J, SHAO G Q, LI Q, et al. Vertical diamond trench MOS barrier Schottky diodes with high breakdown voltage[J]. IEEE Transactions on Electron Devices, 2022, 69(11): 6231-6235. [59] SAHA N C, IRIE Y, SEKI Y, et al. 1651-V all-ion-implanted Schottky barrier diode on heteroepitaxial diamond with 3.6×10 h on/off ratio[J]. IEEE Electron Device Letters, 2023, 44(2): 293-296. [60] TOKUYUKI T E R A J I, SATOSHI K O I Z U M I, YASUO K O I D E, et al. Electric field breakdown of lateral Schottky diodes of diamond[J]. Japanese Journal of Applied Physics, 2007, 46(8/11): L196-L198. [61] KUMARESAN R, UMEZAWA H, SHIKATA S. Vertical structure Schottky barrier diode fabrication using insulating diamond substrate[J]. Diamond and Related Materials, 2010, 19(10): 1324-1329. [62] KUMARESAN R, UMEZAWA H, SHIKATA S. Parasitic resistance analysis of pseudovertical structure diamond Schottky barrier diode[J]. Physica Status Solidi (a), 2010, 207(8): 1997-2001. [63] BORMASHOV V S, TERENTIEV S A, BUGA S G, et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique[J]. Diamond and Related Materials, 2017, 75: 78-84. [64] 郁鑫鑫, 周建军, 王艳丰, 等. 高电流密度金刚石肖特基势垒二极管研究[J]. 固体电子学研究与进展, 2019, 39(2): 77-80+85. YU X X, ZHOU J J, WANG Y F, et al. Research of diamond Schottky barrier diodes with high current density[J]. Research & Progress of SSE, 2019, 39(2): 77-80+85 (in Chinese). [65] ROY S, BHATTACHARYYA A, RANGA P, et al. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with baliga’s figure of merit over 1 GW/cm2[J]. IEEE Electron Device Letters, 2021, 42(8): 1140-1143. [66] JIN F Y, CHEN P H, HUNG W C, et al. Analysis of breakdown-voltage increase on SiC junction barrier Schottky diode under negative bias stress[J]. IEEE Transactions on Electron Devices, 2023, 70(1): 191-195. [67] SHANKAR B, GUPTA S K, TAUBE W R, et al. Dependence of field plate parameters on dielectric constant in a 4H-SiC Schottky diode[C]//2014 IEEE 2nd International Conference on Emerging Electronics (ICEE). December 3-6, 2014, Bengaluru, India. IEEE, 2015: 1-3. [68] ZHANG Y L, LIU P F, ZHANG J, et al. 1.2-kV 4H-SiC JBS diodes engaging P-type retrograde implants[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6963-6970. [69] UMEZAWA H, NAGASE M, KATO Y, et al. High temperature application of diamond power device[J]. Diamond and Related Materials, 2012, 24: 201-205. [70] UMEZAWA H, NAGASE M, KATO Y, et al. Diamond vertical Schottky barrier diode with Al2O3 field plate[J]. Materials Science Forum, 2012, 717/718/719/720: 1319-1321. [71] ZHAO D, LIU Z C, WANG J, et al. Reduction in reverse leakage current of diamond vertical Schottky barrier diode using SiNX field plate structure[J]. Results in Physics, 2019, 13: 102250. [72] YU X X, ZHOU J J, WANG Y F, et al. Breakdown enhancement of diamond Schottky barrier diodes using boron implanted edge terminations[J]. Diamond and Related Materials, 2019, 92: 146-149. [73] ZHANG S M, LI Q, WANG J, et al. High breakdown electric field diamond Schottky barrier diode with SnO2 field plate[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6917-6921. [74] LI Q, WANG J, SHAO G Q, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diode with annealing method and AlO field plate structure[J]. IEEE Electron Device Letters, 2022, 43(11): 1937-1940. [75] LI Q, WANG J, CHEN G Q, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diodes by selective growth nitrogen-doped diamond field plate[J]. Diamond and Related Materials, 2023, 134: 109799. [76] AL-AHMADI N A. Metal oxide semiconductor-based Schottky diodes: a review of recent advances[J]. Materials Research Express, 2020, 7(3): 032001. [77] SHAO G Q, WANG J, LIU Z C, et al. Performance-improved vertical Zr/diamond Schottky barrier diode with lanthanum hexaboride interfacial layer[J]. IEEE Electron Device Letters, 2021, 42(9): 1366-1369. [78] WANG J, SHAO G Q, CHEN G Q, et al. Schottky barrier height modulation of Zr/p-diamond Schottky contact by inserting ultrathin atomic layer-deposited Al2O3[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 5995-6000. [79] ZHANG S M, WANG J, LI Q, et al. Improved-performance diamond Schottky barrier diode with tin oxide interlayer[J]. IEEE Transactions on Electron Devices, 2022, 69(11): 6260-6264. [80] REZEK B, WATANABE H, NEBEL C E. High carrier mobility on hydrogen terminated 〈100〉 diamond surfaces[J]. Applied Physics Letters, 2006, 88(4): 042110. [81] TSUGAWA K, NODA H, HIROSE K, et al. Schottky barrier heights, carrier density, and negative electron affinity of hydrogen-terminated diamond[J]. Physical Review B, 2010, 81(4): 045303. [82] MAIER F, RISTEIN J, LEY L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces[J]. Physical Review B, 2001, 64(16): 165411. [83] RIETWYK K J, WONG S L, CAO L, et al. Work function and electron affinity of the fluorine-terminated (100) diamond surface[J]. Applied Physics Letters, 2013, 102(9): 091604. [84] UEDA K, KAWAMOTO K, ASANO H. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes[J]. Diamond and Related Materials, 2015, 57: 28-31. [85] ZHAO D, LIU Z C, WANG J, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/ fluorine-terminated diamond[J]. Applied Surface Science, 2018, 457: 411-416. [86] ZHAO D, LIU Z C, WANG J, et al. Performance improved vertical diamond Schottky barrier diode with fluorination-termination structure[J]. IEEE Electron Device Letters, 2019, 40(8): 1229-1232. [87] LIU Z C, YI W Y, ZHAO D, et al. Diamond avalanche diodes for obtaining high-voltage pulse with subnanosecond front edge[J]. AIP Advances, 2020, 10(6): 065015. [88] BIN ABU BAKAR M H, TRAORE A, GUO J J, et al. Optically detected magnetic resonance of nitrogen-vacancy centers in vertical diamond Schottky diodes[J]. Japanese Journal of Applied Physics, 2022, 61(SC): SC1061. [89] SURDI H, KOECK F A M, AHMAD M F, et al. Demonstration and analysis of ultrahigh forward current density diamond diodes[J]. IEEE Transactions on Electron Devices, 2022, 69(1): 254-261. [90] HAZDRA P, LAPOSA A, OBÁŇ Z, et al. Pseudo-vertical Mo/Au Schottky diodes on {113} oriented boron doped homoepitaxial diamond layers[J]. Diamond and Related Materials, 2022, 126: 109088. [91] KWAK T, HAN S H, CHOI U, et al. Diamond Schottky barrier diode fabricated on high-crystalline quality misoriented heteroepitaxial (001) diamond substrate[J]. Diamond and Related Materials, 2023, 133: 109750. [92] SHAO G Q, WANG J, WANG Y F, et al. Inhomogeneous heterojunction performance of Zr/diamond Schottky diode with Gaussian distribution of barrier heights for high sensitivity temperature sensor[J]. Sensors and Actuators A: Physical, 2022, 347: 113906. |
[1] | 吴锐文, 宋华平, 杨军伟, 屈红霞, 赖晓芳. 基于聚氨酯垫的4H-SiC单晶衬底研磨性质研究[J]. 人工晶体学报, 2023, 52(5): 759-765. |
[2] | 屈鹏霏, 金鹏, 周广迪, 王镇, 许敦洲, 吴巨, 郑红军, 王占国. 单晶金刚石异质外延用铱复合衬底研究现状[J]. 人工晶体学报, 2023, 52(5): 857-877. |
[3] | 白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉. 多晶金刚石衬底范德瓦耳斯外延GaN薄膜[J]. 人工晶体学报, 2023, 52(5): 901-908. |
[4] | 李斌, 胡秀飞, 杨旖秋, 王英楠, 谢雪健, 彭燕, 杨祥龙, 王希玮, 胡小波, 徐现刚, 冯志红. 单晶金刚石声子非简谐衰减效应研究[J]. 人工晶体学报, 2023, 52(3): 442-451. |
[5] | 贾元波, 满卫东, 伍正新, 梁凯, 林志东. 二氧化碳对同质外延生长单晶金刚石内应力的影响[J]. 人工晶体学报, 2023, 52(1): 34-40. |
[6] | 张瑞, 于文强. 高温扩散法制备B-S共掺杂单晶金刚石[J]. 人工晶体学报, 2023, 52(1): 41-47. |
[7] | 张玺, 朱如忠, 张序清, 王明华, 高煜, 王蓉, 杨德仁, 皮孝东. 磨料形貌及分散介质对4H碳化硅晶片研磨质量的影响研究[J]. 人工晶体学报, 2023, 52(1): 48-55. |
[8] | 杨旖秋, 韩晓桐, 胡秀飞, 李斌, 彭燕, 王希玮, 胡小波, 徐现刚, 王笃福, 刘长江, 冯志红. 高温高压与CVD金刚石单晶衬底质量对比研究[J]. 人工晶体学报, 2022, 51(9-10): 1777-1784. |
[9] | 方莉俐, 李靖华, 刘韩. 金刚石微粉低温化学镀镍品质影响因素[J]. 人工晶体学报, 2022, 51(8): 1459-1465. |
[10] | 李成明, 任飞桐, 邵思武, 牟恋希, 张钦睿, 何健, 郑宇亭, 刘金龙, 魏俊俊, 陈良贤, 吕反修. 化学气相沉积(CVD)金刚石研究现状和发展趋势[J]. 人工晶体学报, 2022, 51(5): 759-780. |
[11] | 刘本建, 张森, 郝晓斌, 文东岳, 赵继文, 王伟华, 刘康, 曹文鑫, 代兵, 杨磊, 韩杰才, 朱嘉琦. 金刚石辐射伏特效应同位素电池器件研究进展[J]. 人工晶体学报, 2022, 51(5): 801-813. |
[12] | 牟恋希, 曾翰森, 朱肖华, 屠菊萍, 刘金龙, 陈良贤, 魏俊俊, 李成明, 欧阳晓平. CVD人造金刚石核辐射探测器研究进展[J]. 人工晶体学报, 2022, 51(5): 814-829. |
[13] | 王志文, 马红安, 陈良超, 蔡正浩, 贾晓鹏. 硼协同掺杂金刚石单晶的高温高压合成[J]. 人工晶体学报, 2022, 51(5): 830-840. |
[14] | 牛科研, 张璇, 崔博垚, 马永健, 唐文博, 魏志鹏, 张宝顺. 单晶金刚石p型和n型掺杂的研究[J]. 人工晶体学报, 2022, 51(5): 841-851. |
[15] | 赵紫薇, 高小武, 曹文鑫, 刘康, 代兵, 王永杰, 朱嘉琦. 纳米金刚石表面功能化对其性能影响的研究进展[J]. 人工晶体学报, 2022, 51(5): 852-864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||