[1] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439. [2] KIM S M. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation[C]//2019 Compound Semiconductor Week (CSW). May 19-23, 2019, Nara, Japan. IEEE, 2019: 1. [3] CHEN T A, CHUU C P, TSENG C C, et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)[J]. Nature, 2020, 579(7798): 219-223. [4] WANG L, XU X Z, ZHANG L N, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J]. Nature, 2019, 570(7759): 91-95. [5] LIU H, MENG J H, ZHANG X W, et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride[J]. Nanoscale, 2018, 10(12): 5559-5565. [6] KUBOTA Y, WATANABE K, TSUDA O, et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure[J]. Science, 2007, 317(5840): 932-934. [7] REN J K, STAGI L, CARBONARO C M, et al. Defect-assisted photoluminescence in hexagonal boron nitride nanosheets[J]. 2D Materials, 2020, 7(4): 045023. [8] GUO F M, SHEN X, ZHOU J M, et al. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets[J]. Advanced Functional Materials, 2020, 30(19): 1910826. [9] NACLERIO A E, KIDAMBI P R. A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications[J]. Advanced Materials, 2023, 35(6): 2207374. [10] PADUANO Q S, SNURE M, BONDY J, et al. Self-terminating growth in hexagonal boron nitride by metal organic chemical vapor deposition[J]. Applied Physics Express, 2014, 7(7): 071004. [11] SHI N Q, LI L, GAO P, et al. Synthesis of two-dimensional hexagonal boron nitride and mid-infrared nanophotonics[J]. ACS Applied Electronic Materials, 2022, 5(1): 34-65. [12] WANG H L, ZHANG X W, MENG J H, et al. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition[J]. Small, 2015, 11(13): 1542-1547. [13] WANG L F, WU B, CHEN J S, et al. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors[J]. Advanced Materials, 2014, 26(10): 1559-1564. [14] SONG X J, GAO J F, NIE Y F, et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation[J]. Nano Research, 2015, 8(10): 3164-3176. [15] NGUYEN V L, SHIN B G, DUONG D L, et al. Seamless stitching of graphene domains on polished copper (111) foil[J]. Advanced Materials, 2015, 27(8): 1376-1382. [16] LI J D, LI Y, YIN J, et al. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation[J]. Small, 2016, 12(27): 3645-3650. [17] LI X, WU G L, ZHANG L N, et al. Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates[J]. Nature Communications, 2022, 13(1): 1-8. [18] MUNTWILER M, AUWÄRTER W, BAUMBERGER F, et al. Determining adsorbate structures from substrate emission X-ray photoelectron diffraction[J]. Surface Science, 2001, 472(1/2): 125-132. [19] CHO H, PARK S, WON D I, et al. Growth kinetics of white graphene (h-BN) on a planarised Ni foil surface[J]. Scientific Reports, 2015, 5(1): 1-10. [20] WANG H L, ZHANG X W, LIU H, et al. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition[J]. Advanced Materials, 2015, 27(48): 8109-8115. [21] OH H, JO J, TCHOE Y, et al. Centimeter-sized epitaxial h-BN films[J]. NPG Asia Materials, 2016, 8(11): e330. [22] MENG J H, ZHANG X W, WANG Y, et al. Aligned growth of millimeter-size hexagonal boron nitride single-crystal domains on epitaxial nickel thin film[J]. Small, 2017, 13(18): 1604179. [23] MENG J H, MING B M, ZHANG X W, et al. Controlled growth of unidirectionally aligned hexagonal boron nitride domains on single crystal Ni (111)/MgO thin films[J]. Crystal Growth & Design, 2019, 19(1): 453-459. [24] MA K Y, ZHANG L N, JIN S, et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111)[J]. Nature, 2022, 606(7912): 88-93. [25] DESROSIERS R M, GREVE D W, GELLMAN A J. Nucleation of boron nitride thin films on Ni(100)[J]. Surface Science, 1997, 382(1/2/3): 35-48. [26] GREBER T, BRANDENBERGER L, CORSO M, et al. Single layer hexagonal boron nitride films on Ni(110)[J]. e-Journal of Surface Science and Nanotechnology, 2006, 4: 410-413. [27] TAKAHASHI T, ITOH H, TAKEUCHI A. Chemical vapor deposition of hexagonal boron nitride thick film on iron[J]. Journal of Crystal Growth, 1979, 47(2): 245-250. [28] KIM S M, HSU A, PARK M H, et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance[J]. Nature Communications, 2015, 6(1): 1-11. [29] LI J H, WANG J Y, ZHANG X T, et al. Hexagonal boron nitride crystal growth from iron, a single component flux[J]. ACS Nano, 2021, 15(4): 7032-7039. [30] VINOGRADOV N A, ZAKHAROV A A, NG M L, et al. One-dimensional corrugation of the h-BN monolayer on Fe(110)[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(3): 1775-1781. [31] PAFFETT M T, SIMONSON R J, PAPIN P, et al. Borazine adsorption and decomposition at Pt(111) and Ru(001) surfaces[J]. Surface Science, 1990, 232(3): 286-296. [32] ZHANG Y H, WENG X F, LI H, et al. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule-metal interaction and metal-catalyzed reactions[J]. Nano Letters, 2015, 15(5): 3616-3623. [33] ĆAVAR E, WESTERSTRÖM R, MIKKELSEN A, et al. A single h-BN layer on Pt(111)[J]. Surface Science, 2008, 602(9): 1722-1726. [34] GAO Y, REN W C, MA T, et al. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils[J]. ACS Nano, 2013, 7(6): 5199-5206. [35] KIM G, JANG A R, JEONG H Y, et al. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil[J]. Nano Letters, 2013, 13(4): 1834-1839. [36] WANG R Z, PURDIE D G, FAN Y, et al. A peeling approach for integrated manufacturing of large monolayer h-BN crystals[J]. ACS Nano, 2019, 13(2): 2114-2126. [37] QI Y, ZHANG Z P, DENG B, et al. Irreparable defects produced by the patching of h-BN frontiers on strongly interacting Re(0001) and their electronic properties[J]. Journal of the American Chemical Society, 2017, 139(16): 5849-5856. [38] QI Y, HAN N N, LI Y C, et al. Strong adlayer-substrate interactions “break” the patching growth of h-BN onto graphene on Re(0001)[J]. ACS Nano, 2017, 11(2): 1807-1815. [39] FARWICK ZUM HAGEN F H, ZIMMERMANN D M, SILVA C C, et al. Structure and growth of hexagonal boron nitride on Ir(111)[J]. ACS Nano, 2016, 10(12): 11012-11026. [40] ORLANDO F, LARCIPRETE R, LACOVIG P, et al. Epitaxial growth of hexagonal boron nitride on Ir(111)[J]. The Journal of Physical Chemistry C, 2012, 116(1): 157-164. [41] MARTOCCIA D, BRUGGER T, BJÖRCK M, et al. h-BN/Ru(0001) nanomesh: a 14-on-13 superstructure with 3.5 nm periodicity[J]. Surface Science, 2010, 604(5/6): L16-L19. [42] SUTTER P, LAHIRI J, ZAHL P, et al. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films[J]. Nano Letters, 2013, 13(1): 276-281. [43] LU G Y, WU T R, YUAN Q H, et al. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy[J]. Nature Communications, 2015, 6(1): 1-7. [44] FUKAMACHI S, SOLÍS-FERNÁNDEZ P, KAWAHARA K, et al. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays[J]. Nature Electronics, 2023, 6(2): 126-136. [45] NAKAMURA K. Preparation and properties of boron nitride films by metal organic chemical vapor deposition[J]. Journal of the Electrochemical Society, 1986, 133(6): 1120-1123. [46] JANG A R, HONG S, HYUN C, et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire[J]. Nano Letters, 2016, 16(5): 3360-3366. [47] BANSAL A, HILSE M, HUET B, et al. Substrate modification during chemical vapor deposition of hBN on sapphire[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54516-54526. [48] DAHAL R, LI J, MAJETY S, et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material[J]. Applied Physics Letters, 2011, 98(21): 211110. [49] KOBAYASHI Y, AKASAKA T. Hexagonal BN epitaxial growth on (0001) sapphire substrate by MOVPE[J]. Journal of Crystal Growth, 2008, 310(23): 5044-5047. [50] DABROWSKA A K, TOKARCZYK M, KOWALSKI G, et al. Two stage epitaxial growth of wafer-size multilayer h-BN by metal-organic vapor phase epitaxy-a homoepitaxial approach[J]. 2D Materials, 2020, 8(1): 015017. [51] LI X, SUNDARAM S, EL GMILI Y, et al. Large-area two-dimensional layered hexagonal boron nitride grown on sapphire by metalorganic vapor phase epitaxy[J]. Crystal Growth & Design, 2016, 16(6): 3409-3415. [52] CHUGH D, WONG-LEUNG J, LI L, et al. Flow modulation epitaxy of hexagonal boron nitride[J]. 2D Materials, 2018, 5(4): 045018. [53] YANG X, NITTA S, PRISTOVSEK M, et al. Scalable synthesis of multilayer h-BN on AlN by metalorganic vapor phase epitaxy: nucleation and growth mechanism[J]. 2D Materials, 2019, 7(1): 015004. [54] GAO M L, MENG J H, CHEN Y N, et al. Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors[J]. Journal of Materials Chemistry C, 2019, 7(47): 14999-15006. [55] CHEN J R, WANG G K, MENG J H, et al. Low-temperature direct growth of few-layer hexagonal boron nitride on catalyst-free sapphire substrates[J]. ACS Applied Materials & Interfaces, 2022, 14(5): 7004-7011. [56] VUONG T P, CASSABOIS G, VALVIN P, et al. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy[J]. 2D Materials, 2017, 4(2): 021023. [57] PAGE R, CASAMENTO J, CHO Y, et al. Rotationally aligned hexagonal boron nitride on sapphire by high-temperature molecular beam epitaxy[J]. Physical Review Materials, 2019, 3(6): 064001. [58] GLAVIN N R, MURATORE C, JESPERSEN M L, et al. Nanoelectronics: amorphous boron nitride: a universal, ultrathin dielectric for 2D nanoelectronics[J]. Advanced Functional Materials, 2016, 26(16): 2771. [59] WANG G K, CHEN J R, MENG J H, et al. Direct growth of hexagonal boron nitride films on dielectric sapphire substrates by pulsed laser deposition for optoelectronic applications[J]. Fundamental Research, 2021, 1(6): 677-683. [60] LEE J, RAVICHANDRAN A V, MOHAN J, et al. Atomic layer deposition of layered boron nitride for large-area 2D electronics[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36688-36694. [61] PARK H, KIM T K, CHO S W, et al. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition[J]. Scientific Reports, 2017, 7(1): 1-8. [62] LI Q, WANG M D, BAI Y H, et al. Two-inch wafer-scale exfoliation of hexagonal boron nitride films fabricated by RF-sputtering[J]. Advanced Functional Materials, 2022, 32(38): 2206094. [63] LIU F, RONG X, YU Y, et al. Thermally annealed wafer-scale h-BN films grown on sapphire substrate by molecular beam epitaxy[J]. Applied Physics Letters, 2020, 116(14): 142104. [64] WANG G K, MENG J H, CHEN J R, et al. Epitaxy of hexagonal boron nitride thin films on sapphire for optoelectronics[J]. Crystal Growth & Design, 2022, 22(12): 7207-7214. [65] LEE S H, JEONG H, OKELLO O F N, et al. Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing[J]. Scientific Reports, 2019, 9(1): 10590. [66] CHEN X, SUN H H, ZHANG W B, et al. The effects of post-annealing technology on crystalline quality and properties of hexagonal boron nitride films deposited on sapphire substrates[J]. Vacuum, 2022, 199: 110935. [67] SHI Z Y, WANG X J, LI Q T, et al. Vapor-liquid-solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates[J]. Nature Communications, 2020, 11(1): 1-8. [68] PENNACHIO D, ORNELAS-SKARIN C, WILSON N, et al. Tailoring commensurability of hBN/graphene heterostructures using substrate morphology and epitaxial growth conditions[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2019, 37(5): 051503. [69] HEILMANN M, PRIKHODKO A S, HANKE M, et al. Influence of proximity to supporting substrate on van der waals epitaxy of atomically thin graphene/hexagonal boron nitride heterostructures[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8897-8907. [70] PIERUCCI D, ZRIBI J, HENCK H, et al. Van der Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: electronic properties and band structure[J]. Applied Physics Letters, 2018, 112(25): 253102. [71] ELIAS C, VALVIN P, PELINI T, et al. Direct band-gap crossover in epitaxial monolayer boron nitride[J]. Nature Communications, 2019, 10(1): 2639. [72] BEHURA S, NGUYEN P, CHE S W, et al. Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2[J]. Journal of the American Chemical Society, 2015, 137(40): 13060-13065. [73] BEHURA S, NGUYEN P, DEBBARMA R, et al. Chemical interaction-guided, metal-free growth of large-area hexagonal boron nitride on silicon-based substrates[J]. ACS Nano, 2017, 11(5): 4985-4994. [74] MAJETY S, LI J, ZHAO W P, et al. Hexagonal boron nitride and 6H-SiC heterostructures[J]. Applied Physics Letters, 2013, 102(21): 213505. [75] YIN J, LIU X F, LU W L, et al. Aligned growth of hexagonal boron nitride monolayer on germanium[J]. Small, 2015, 11(40): 5375-5380. [76] YANG X, PRISTOVSEK M, NITTA S, et al. Epitaxial combination of two-dimensional hexagonal boron nitride with single-crystalline diamond substrate[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46466-46475. |