人工晶体学报 ›› 2023, Vol. 52 ›› Issue (6): 960-981.
所属专题: 半导体薄膜与外延技术
赵军一1,2, 刘润泽1,2, 楼逸扬1,2, 霍永恒1,2,3
收稿日期:
2023-04-09
出版日期:
2023-06-15
发布日期:
2023-06-30
通信作者:
霍永恒,博士,教授。E-mail:yongheng@ustc.edu.cn
作者简介:
赵军一(1998—),男,安徽省人,博士研究生。E-mail:junyi98@mail.ustc.edu.cn
基金资助:
ZHAO Junyi1,2, LIU Runze1,2, LOU Yiyang1,2, HUO Yongheng1,2,3
Received:
2023-04-09
Online:
2023-06-15
Published:
2023-06-30
摘要: 量子光源是量子通信和光量子计算的基础模块。光子的单光子性保证了通信的无条件安全,光子的高不可分辨性保证了计算方案的复杂度。在各类固态材料候选体系中,基于半导体量子点体系的单光子源和纠缠光子源保持着量子光源品质的最高纪录,展现了巨大的潜力。分子束外延是目前最适合制备固态半导体量子点的生长方法,超高真空、超纯材料、原位监测和生长过程中参数的高度可控等特点使其优势明显。为了实现同时具备高效率、高单光子纯度、高不可分辨性和高纠缠保真度的量子光源,量子点的材料生长、外部调控、钝化技术和测量技术等都需要系统优化提升。本文将综述基于分子束外延生长实现固态量子点体系量子光源的基础材料与器件的研究进展,讨论两种常见量子点的制备原理以及外延生长中各类参数对量子点品质的影响,包括背景真空、源料纯度、衬底温度、生长速率和束流比等。本文随后简介了外部调控、表面钝化、测量技术等手段优化量子光源器件性能的技术细节和实验进展,最后对量子光源在基础科学研究和量子网络构建中取得的进展进行总结,并对其实际应用与发展前景进行展望。
中图分类号:
赵军一, 刘润泽, 楼逸扬, 霍永恒. 确定性固态量子光源基础材料与器件[J]. 人工晶体学报, 2023, 52(6): 960-981.
ZHAO Junyi, LIU Runze, LOU Yiyang, HUO Yongheng. Basic Materials and Devices of the Deterministic Solid-State Quantum Light Sources[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 960-981.
[1] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6): 467-488. [2] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th Annual Symposium on Foundations of Computer Science. November 20-22, 1994, Santa Fe, NM, USA. IEEE, 2002: 124-134. [3] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing. May 22 - 24, 1996, Philadelphia, Pennsylvania, USA. New York: ACM, 1996: 212-219. [4] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463. [5] BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560: 7-11. [6] EKERT A K. Quantum cryptography based on Bell's theorem[J]. Physical Review Letters, 1991, 67(6): 661-663. [7] YIN J, CAO Y, LI Y H, et al. Satellite-to-ground entanglement-based quantum key distribution[J]. Physical Review Letters, 2017, 119(20): 200501. [8] DOWLING J P, MILBURN G J. Quantum technology: the second quantum revolution[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361(1809): 1655-1674. [9] 沈 奇. 量子通信中的精密时间测量技术研究[D]. 合肥: 中国科学技术大学, 2013. SHEN Q. The research on high resolution time to digital convertion for quantum mmunication[D]. Hefei: University of Science and Technology of China, 2013 (in Chinese). [10] KNILL E, LAFLAMME R, ZUREK W H. Resilient quantum computation[J]. Science, 1998, 279(5349): 342-345. [11] KOK P, MUNRO W J, NEMOTO K, et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 2007, 79(1): 135-174. [12] TOMM N. A quantum dot in a microcavity as a bright source of coherent single photons[D/OL]//University of Basel, 2021. DOI:10.5451/unibas-ep84050. [13] SLUSSARENKO S, PRYDE G J. Photonic quantum information processing: a concise review[J]. Applied Physics Reviews, 2019, 6(4): 041303. [14] SENELLART P, SOLOMON G, WHITE A. High-performance semiconductor quantum-dot single-photon sources[J]. Nature Nanotechnology, 2017, 12(11): 1026-1039. [15] ARAKAWA Y, HOLMES M J. Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview[J]. Applied Physics Reviews, 2020, 7(2): 021309. [16] 张晓峰, 朱 俊, 曾贵华. 量子光源综述[J]. 南京邮电大学学报(自然科学版), 2011, 31(2): 83-93. ZHANG X F, ZHU J, ZENG G H. Overview of quantum light source[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2011, 31(2): 83-93 (in Chinese). [17] ANDERSEN U L, GEHRING T, MARQUARDT C, et al. 30 years of squeezed light generation[J]. Physica Scripta, 2016, 91(5): 053001. [18] DING X, HE Y, DUAN Z C, et al. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar[J]. Physical Review Letters, 2016, 116(2): 20401. [19] WANG H, HE Y M, CHUNG T H, et al. Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 2019, 13(11): 770-775. [20] CHEN Y, ZOPF M, KEIL R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna[J]. Nature Communications, 2018, 9: 2994. [21] 丁 星. 基于微腔中量子点的高亮度高品质单光子源[D]. 合肥: 中国科学技术大学, 2020. DING X. Near optimal single photon source based on self-assembled quantum dot in a micro cavity[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese). [22] HAMBURY BROWN R, TWISS R Q. Correlation between photons in two coherent beams of light[J]. Physical Review Letters, 1987, 59(18): 2044-2046. [23] SPRING J B, METCALF B J, HUMPHREYS P C, et al. Boson sampling on a photonic chip[J]. Science, 2013, 339(6121): 798-801. [24] ROHDE P P. Optical quantum computing with photons of arbitrarily low fidelity and purity[J]. Physical Review A, 2012, 86(5): 52321. [25] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046. [26] XIANG Y, XIONG S J. Entanglement fidelity and measurement of entanglement preservation in quantum processes[J]. Physical Review A, 2007, 76(1): 14301. [27] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942. [28] JAMES D F V, KWIAT P G, MUNRO W J, et al. Measurement of qubits[J]. Physical Review A, 2001, 64(5): 52312. [29] KÜCK S. Single photon sources for absolute radiometry-A review about the current state of the art[J]. Measurement: Sensors, 2021, 18: 100219. [30] WANG X B, PENG C Z, ZHANG J, et al. General theory of decoy-state quantum cryptography with source errors[J]. Physical Review A, 2008, 77(4): 42311. [31] 陈 昱. 基于多像素光子计数器的量子探测器层析标定及其应用[D]. 上海: 华东师范大学, 2021. CHEN Y. MPPC-based quantum detector tomography calibration and applications[D]. Shanghai: East China Normal University, 2021 (in Chinese). [32] CHENG B, DENG X H, GU X, et al. Noisy intermediate-scale quantum computers[J]. Frontiers of Physics, 2023, 18(2): 1-62. [33] KANEDA F, CHRISTENSEN B G, WONG J J, et al. Time-multiplexed heralded single-photon source[J]. Optica, 2015, 2(12): 1010-1013. [34] WANG J F, ZHOU Y, WANG Z Y, et al. Bright room temperature single photon source at telecom range in cubic silicon carbide[J]. Nature Communications, 2018, 9: 4106. [35] GAN L, ZHANG D Y, ZHANG R L, et al. Large-scale, high-yield laser fabrication of bright and pure single-photon emitters at room temperature in hexagonal boron nitride[J]. ACS Nano, 2022, 16(9): 14254-14261. [36] RAINÒ G, YAZDANI N, BOEHME S C, et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots[J]. Nature Communications, 2022, 13: 2587. [37] NELIUBOV A Y, EREMCHEV I Y, DRACHEV V P, et al. Enigmatic color centers in microdiamonds with bright, stable, and narrow-band fluorescence[J]. Physical Review B, 2023, 107(8): L081406. [38] TOMM N, JAVADI A, ANTONIADIS N O, et al. A bright and fast source of coherent single photons[J]. Nature Nanotechnology, 2021, 16(4): 399-403. [39] WANG H, QIN J, CHEN S, et al. Observation of Intensity Squeezing in Resonance Fluorescence from a Solid-State Device[J]. Physical Review Letters, 2020, 125(15): 153601. [40] LIU F, BRASH A J, O'HARA J, et al. High Purcell factor generation of indistinguishable on-chip single photons[J]. Nature Nanotechnology, 2018, 13(9): 835-840. [41] KUHLMANN A V, PRECHTEL J H, HOUEL J, et al. Transform-limited single photons from a single quantum dot[J]. Nature Communications, 2015, 6: 8204. [42] WEI Y J, HE Y M, CHEN M C, et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage[J]. Nano Letters, 2014, 14(11): 6515-6519. [43] SCHWEICKERT L, JÖNS K D, ZEUNER K D, et al. On-demand generation of background-free single photons from a solid-state source[J]. Applied Physics Letters, 2018, 112(9): 093106. [44] AHARONOVICH I, ENGLUND D, TOTH M. Solid-state single-photon emitters[J]. Nature Photonics, 2016, 10(10): 631-641. [45] KIMBLE H J, DAGENAIS M, MANDEL L. Photon antibunching in resonance fluorescence[J]. Physical Review Letters, 1977, 39(11): 691-695. [46] DIEDRICH F, WALTHER H. Nonclassical radiation of a single stored ion[J]. Physical Review Letters, 1987, 58(3): 203-206. [47] HE Y M, IFF O, LUNDT N, et al. Cascaded emission of single photons from the biexciton in monolayered WSe2[J]. Nature Communications, 2016, 7: 13409. [48] TURUNEN M, BROTONS-GISBERT M, DAI Y Y, et al. Quantum photonics with layered 2D materials[J]. Nature Reviews Physics, 2022, 4(4): 219-236. [49] LOUNIS B, MOERNER W E. Single photons on demand from a single molecule at room temperature[J]. Nature, 2000, 407(6803): 491-493. [50] FARAON A, BARCLAY P E, SANTORI C, et al. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity[J]. Nature Photonics, 2011, 5(5): 301-305. [51] KARLSSON K F, DUPERTUIS M A, OBERLI D Y, et al. Fine structure of exciton complexes in high-symmetry quantum dots: Effects of symmetry breaking and symmetry elevation[J]. Physical Review B, 2010, 81(16): 161307. [52] BAYER M, ORTNER G, STERN O, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots[J]. Physical Review B, 2002, 65(19): 195315. [53] 王建平. 半导体自组织量子点物理性质的外场调控[D]. 合肥: 中国科学技术大学, 2017. WANG J P. Tuning physical properties of semiconductor self-assembled quantum dots[D]. Hefei: University of Science and Technology of China, 2017 (in Chinese). [54] LIU J, SU R B, WEI Y M, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J]. Nature Nanotechnology, 2019, 14(6): 586-593. [55] LIU S, ZHOU S J, WANG K, et al. Several co-design issues using DfX for solid state lighting[C]//2011 12th International Conference on Electronic Packaging Technology and High Density Packaging. August 8-11, 2011. Shanghai, China. IEEE, 2011. [56] MANASEVIT H M. Single-crystal gallium arsenide on insulating substrates[J]. Applied Physics Letters, 1968, 12(4): 156-159. [57] PAUL M, OLBRICH F, HÖSCHELE J, et al. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers[J]. Applied Physics Letters, 2017, 111(3): 033102. [58] MÜLLER T, SKIBA-SZYMANSKA J, KRYSA A B, et al. A quantum light-emitting diode for the standard telecom window around 1, 550 nm[J]. Nature Communications, 2018, 9: 862. [59] SITTIG R, NAWRATH C, KOLATSCHEK S, et al. Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform[J]. Nanophotonics, 2022, 11(6): 1109-1116. [60] GODEJOHANN B J, TURE E, MÜLLER S, et al. AlN/GaN HEMTs grown by MBE and MOCVD: impact of Al distribution[J]. Physica Status Solidi (b), 2017, 254(8): 1600715. [61] HUO Y H, KRFIÁPEK V, RASTELLI A, et al. Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots[J]. Phys Rev B, 2014, 90(4): 41304. [62] WANG S J, QIN F W, BAI Y Z, et al. Impact of the deposition temperature on the structural and electrical properties of InN films grown on self-standing diamond substrates by low-temperature ECR-MOCVD[J]. Coatings, 2020, 10(12): 1185. [63] NAWRATH C, OLBRICH F, PAUL M, et al. Coherence and indistinguishability of highly pure single photons from non-resonantly and resonantly excited telecom C-band quantum dots[J]. Applied Physics Letters, 2019, 115(2): 023103. [64] NAWRATH C, VURAL H, FISCHER J, et al. Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band[J]. Applied Physics Letters, 2021, 118(24): 244002. [65] CHO A Y, ARTHUR J R. Molecular beam epitaxy[J]. Progress in Solid State Chemistry, 1975, 10: 157-191. [66] 周均铭. 中国分子束外延技术发展历程[J]. 物理, 2021, 50(12): 843-848. ZHOU J M. Development course of molecular beam epitaxy technology in China[J]. Physics, 2021, 50(12): 843-848 (in Chinese). [67] VAN DER MERWE J H. Theoretical considerations in growing uniform epilayers[J]. Interface Science, 1993, 1(1): 77-86. [68] LEONARD D, POND K, PETROFF P M. Critical layer thickness for self-assembled InAs islands on GaAs[J]. Physical Review B, 1994, 50(16): 11687-11692. [69] AANAND A, DONGRE S, GAZI S A, et al. Effect of substrate temperature variation on the structural and optical properties of self assembled InAs quantum dots[C]//SPIE Nanoscience + Engineering. Proc SPIE 11085, Low-Dimensional Materials and Devices 2019, San Diego, California, USA. 2019, 11085: 128-135. [70] CHU L, ARZBERGER M, BÖHM G, et al. Influence of growth conditions on the photoluminescence of self-assembled InAs/GaAs quantum dots[J]. Journal of Applied Physics, 1999, 85(4): 2355-2362. [71] FÄLTH J F, YOON S F, FITZGERALD E A. The influence of substrate temperature on InAsN quantum dots grown by molecular beam epitaxy[J]. Nanotechnology, 2008, 19(45): 455606. [72] JOYCE P B, KRZYZEWSKI T J, BELL G R, et al. Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy[J]. Physical Review B, 2000, 62(16): 10891-10895. [73] MURRAY R, CHILDS D, MALIK S, et al. 1.3 μm room temperature emission from InAs/GaAs self-assembled quantum dots[J]. Japanese Journal of Applied Physics, 1999, 38(1S): 528. [74] LEE K S, OH G, KIM E K, et al. Temperature dependent photoluminescence from InAs/GaAs quantum dots grown by molecular beam epitaxy[J]. Applied Science and Convergence Technology, 2017, 26(4): 86-90. [75] AGARWAL A, AANAND A, GAZI S A, et al. The effects of V-III ratio on structural and optical properties of self-assembled InAs quantum dots[C]∥SPIE Nanoscience+Engineering. Proc SPIE 11085, Low-Dimensional Materials and Devices 2019, San Diego, California, USA. 2019, 11085: 102-110. [76] DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418. [77] SANGOUARD N, SIMON C, DE RIEDMATTEN H, et al. Quantum repeaters based on atomic ensembles and linear optics[J]. Rev Mod Phys, 2011, 83(1): 33-80. [78] WATANABE K, KOGUCHI N, GOTOH Y. Fabrication of GaAs quantum dots by modified droplet epitaxy[J]. Japanese Journal of Applied Physics, 2000, 39(2A): L79. [79] WANG Z M, HOLMES K, MAZUR Y I, et al. Self-organization of quantum-dot pairs by high-temperature droplet epitaxy[J]. Nanoscale Research Letters, 2006, 1(1): 57. [80] KOGUCHI N, TAKAHASHI S, CHIKYOW T. New MBE growth method for InSb quantum well boxes[J]. Journal of Crystal Growth, 1991, 111(1): 688-692. [81] MANO T, ABBARCHI M, KURODA T, et al. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy[J]. Nanotechnology, 2009, 20(39): 395601. [82] LANGER F B, PLISCHKE D, KAMP M, et al. Single photon emission of a charge-tunable GaAs/Al0.25Ga0.75As droplet quantum dot device[J]. Applied Physics Letters, 2014, 105(8): 081111. [83] BASSO BASSET F, BIETTI S, REINDL M, et al. High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy[J]. Nano Letters, 2018, 18(1): 505-512. [84] ABBARCHI M, TROIANI F, MASTRANDREA C, et al. Spectral diffusion and line broadening in single self-assembled GaAs/AlGaAs quantum dot photoluminescence[J]. Applied Physics Letters, 2008, 93(16): 162101. [85] HUO Y H, RASTELLI A, SCHMIDT O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate[J]. Applied Physics Letters, 2013, 102(15): 152105. [86] HUBER D, REINDL M, HUO Y H, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots[J]. Nature Communications, 2017, 8: 15506. [87] HUO Y H, KRFIÁPEK V, RASTELLI A, et al. Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots[J]. Physical Review B, 2014, 90(4): 41304. [88] WANG J F, JORGENSEN K F, FARZANA E, et al. Impact of growth parameters on the background doping of GaN films grown by ammonia and plasma-assisted molecular beam epitaxy for high-voltage vertical power switches[J]. APL Materials, 2021, 9(8): 081118. [89] LARKINS E C, HELLMAN E S, SCHLOM D G, et al. GaAs with very low acceptor impurity background grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 1987, 81(1): 344-348. [90] HOUEL J, KUHLMANN A V, GREUTER L, et al. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot[J]. Physical Review Letters, 2012, 108(10): 107401. [91] NGUYEN G N, KORSCH A R, SCHMIDT M, et al. Influence of molecular beam effusion cell quality on optical and electrical properties of quantum dots and quantum wells[J]. Journal of Crystal Growth, 2020, 550: 125884. [92] NAJER D, TOMM N, JAVADI A, et al. Suppression of surface-related loss in a gated semiconductor microcavity[J]. Physical Review Applied, 2021, 15(4): 044004. [93] LÖBL M C, SÖLLNER I, JAVADI A, et al. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode[J]. Physical Review B, 2017, 96(16): 165440. [94] DAPKUS P D. A critical comparison of MOCVD and MBE for heterojunction devices[J]. Journal of Crystal Growth, 1984, 68(1): 345-355. [95] HERMAN M A, SITTER H. Molecular beam epitaxy: fundamentals and current status[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. [96] LI L H, ZHU J X, CHEN L, et al. The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers[J]. Optics Express, 2015, 23(3): 2720-2729. [97] WASILEWSKI Z R, FAFARD S, MCCAFFREY J P. Size and shape engineering of vertically stacked self-assembled quantum dots[J]. Journal of Crystal Growth, 1999, 201-202: 1131-1135. [98] SASAKURA H, KAYAMORI S, ADACHI S, et al. Effect of indium-flush method on the control of photoluminescence energy of highly uniform self-assembled InAs quantum dots by slow molecular beam epitaxy growth[J]. Journal of Applied Physics, 2007, 102(1): 013515. [99] LÖBL M C, SCHOLZ S, SÖLLNER I, et al. Excitons in InGaAs quantum dots without electron wetting layer states[J]. Communications Physics, 2019, 2: 93. [100] GRYDLIK M, LANGER G, FROMHERZ T, et al. Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates[J]. Nanotechnology, 2013, 24(10): 105601. [101] HEYN C. Critical coverage for strain-induced formation of InAs quantum dots[J]. Physical Review B, 2001, 64(16): 165306. [102] BART N, DANGEL C, ZAJAC P, et al. Wafer-scale epitaxial modulation of quantum dot density[J]. Nature Communications, 2022, 13: 1633. [103] PURCELL E M. Spontaneous emission probabilities at radio frequencies BT-confined electrons and photons: new physics and applications[M]. Boston, MA: Springer US, 1995: 839. [104] RCARI M, SÖLLNER I, JAVADI A, et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Physical Review Letters, 2014, 113(9): 93603. [105] BARBOUR R J, DALGARNO P A, CURRAN A, et al. A tunable microcavity[J]. Journal of Applied Physics, 2011, 110(5): 053107. [106] GREEN W M J, SCHEUER J, DEROSE G, et al. Vertically emitting annular Bragg lasers using polymer epitaxial transfer[J]. Applied Physics Letters, 2004, 85(17): 3669-3671. [107] HE Y M, LIU J, MAIER S, et al. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging[J]. Optica, 2017, 4(7): 802-808. [108] SAPIENZA L, DAVANÇO M, BADOLATO A, et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission[J]. Nature Communications, 2015, 6: 7833. [109] LI L Z, CHEN E H, ZHENG J B, et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating[J]. Nano Letters, 2015, 15(3): 1493-1497. [110] MOHAN A, FELICI M, GALLO P, et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots[J]. Nature Photonics, 2010, 4: 302-306. [111] HUBER D, REINDL M, COVRE DA SILVA S F, et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand[J]. Physical Review Letters, 2018, 121(3): 33902. [112] HUANG H, CSONTOSOVÁ D, MANNA S, et al. Electric field induced tuning of electronic correlation in weakly confining quantum dots[J]. Physical Review B, 2021, 104(16): 165401. [113] SCHIMPF C, MANNA S, DA SILVA S F C, et al. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K[J]. Advanced Photonics, 2021, 3(6): 065001. [114] DAVANÇO M, HELLBERG C S, ATES S, et al. Multiple time scale blinking in InAs quantum dot single-photon sources[J]. Physical Review B, 2014, 89(16): 161303. [115] ZHAI L A, LÖBL M C, NGUYEN G N, et al. Low-noise GaAs quantum dots for quantum photonics[J]. Nature Communications, 2020, 11: 4745. [116] ZHOU L, BO B X, YAN X Z, et al. Brief review of surface passivation on III-V semiconductor[J]. Crystals, 2018, 8(5): 226. [117] MANNA S, HUANG H, DA SILVA S F C, et al. Surface passivation and oxide encapsulation to improve optical properties of a single GaAs quantum dot close to the surface[J]. Applied Surface Science, 2020, 532: 147360. [118] GUHA B, MARSAULT F, CADIZ F, et al. Surface-enhanced gallium arsenide photonic resonator with quality factor of 6×106[J]. Optica, 2017, 4(2): 218-221. [119] LIU J, KONTHASINGHE K, DAVANÇO M, et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication[J]. Physical Review Applied, 2018, 9(6): 064019. [120] MANASEVIT H M. Single-crystal gallium arsenide on insulating substrates. Applied Physics Letters, 1968, 12(4): 156-159. [121] KURUMA K, OTA Y, KAKUDA M, et al. Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots[J]. APL Photonics, 2020, 5(4): 046106. [122] O'CONNOR, BRENNAN B, DJARA V, et al. A systematic study of (NH4)2S passivation (22%, 10%, 5%, or 1%) on the interface properties of the Al2O3/In0.53Ga0.47As/InP system for n-type and p-type In0.53Ga0.47As epitaxial layers[J]. Journal of Applied Physics, 2011, 109(2): 024101. [123] CHELLU A, KOIVUSALO E, RAAPPANA M, et al. GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices[J]. Nanotechnology, 2021, 32(13): 130001. [124] DORSTEN J F, MASLAR J E, BOHN P W. Near-surface electronic structure in GaAs (100) modified with self-assembled monolayers of octadecylthiol[J]. Applied Physics Letters, 1995, 66(14): 1755-1757. [125] ZHOU L, CHU X F, CHI Y D, et al. Property improvement of GaAs surface by 1-octadecanethiol passivation[J]. Crystals, 2019, 9(3): 130. [126] CAO X, YANG J Z, LI P J, et al. Single photon emission from ODT passivated near-surface GaAs quantum dots[J]. Applied Physics Letters, 2021, 118(22): 221107. [127] ALEKSEEV P A, DUNAEVSKIY M S, ULIN V P, et al. Nitride surface passivation of GaAs nanowires: impact on surface state density[J]. Nano Letters, 2015, 15(1): 63-68. [128] BERKOVITS V L, GORDEEVA A B, L'VOVA T V, et al. Nitride and sulfide chemisorbed layers as the surface passivants for A3B5 semiconductors[C]//KERVALISHVILI P, YANNAKOPOULOS P. Nuclear Radiation Nanosensors and Nanosensory Systems. Dordrecht: Springer, 2016: 61-79. [129] LIU Z H, NG G I, ZHOU H, et al. Reduced surface leakage current and trapping effects in AlGaN/GaN high electron mobility transistors on silicon with SiN/Al2O3 passivation[J]. Applied Physics Letters, 2011, 98(11): 113506. [130] YEN C F, LEE M K, LEE J C. Electrical characteristics of Al2O3/TiO2/Al2O3 prepared by atomic layer deposition on (NH4)2S-treated GaAs[J]. Solid-State Electronics, 2014, 92: 1-4. [131] 何玉明. 高品质量子点单光子源和自旋光子界面[D]. 合肥: 中国科学技术大学, 2014. HE Y M. Ultrapure single photons and spin-photon entanglement from self-assembled quantum dots[D]. Hefei: University of Science and Technology of China, 2014 (in Chinese). [132] HE Y M, HE Y, WEI Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 2013, 8(3): 213-217. [133] WANG H, DUAN Z C, LI Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter[J]. Physical Review Letters, 2016, 116(21): 213601. [134] LODAHL P, MAHMOODIAN S, STOBBE S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 2015, 87(2): 347-400. [135] WANG H, HE Y, LI Y H, et al. High-efficiency multiphoton boson sampling[J]. Nature Photonics, 2017, 11(6): 361-365. [136] BRIEGEL H J, DÜR W, CIRAC J I, et al. Quantum repeaters: the role of imperfect local operations in quantum communication[J]. Physical Review Letters, 1998, 81(26): 5932-5935. [137] YOU X, ZHENG M Y, CHEN S, et al. Quantum interference with independent single-photon sources over 300 km fiber[J]. Advanced Photonics, 2022, 4(6): 066003. [138] BENNETT C H, BRASSARD G, CRÉPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895-1899. [139] 吴 华, 王向斌, 潘建伟. 量子通信现状与展望[J]. 中国科学: 信息科学, 2014, 44(3): 296-311. WU H, WANG X B, PAN J W. Quantum communication: status and prospects[J]. Scientia Sinica (Informationis), 2014, 44(3): 296-311 (in Chinese). [140] TAKEMOTO K, NAMBU Y, MIYAZAWA T, et al. Transmission experiment of quantum keys over 50 km using high-performance quantum-dot single-photon source at 1.5 μm wavelength[J]. Applied Physics Express, 2010, 3(9): 092802. [141] RAU M, HEINDEL T, UNSLEBER S, et al. Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources: a proof of principle experiment[J]. New Journal of Physics, 2014, 16(4): 043003. [142] BASSO BASSET F, VALERI M, ROCCIA E, et al. Quantum key distribution with entangled photons generated on demand by a quantum dot[J]. Science Advances, 2021, 7(12): eabe6379. [143] VAJNER D A, RICKERT L, GAO T, et al. Quantum communication using semiconductor quantum dots[J]. Advanced Quantum Technologies, 2022, 5(7): 2100116. [144] PAN J W, CHEN Z B, LU C Y, et al. Multiphoton entanglement and interferometry[J]. Reviews of Modern Physics, 2012, 84(2): 777-838. [145] AARONSON S, ARKHIPOV A. The computational complexity of linear optics[C]//Proceedings of the forty-third annual ACM symposium on Theory of computing. June 6 - 8, 2011, San Jose, California, USA. New York: ACM, 2011: 333-342. [146] WANG H, QIN J, DING X, et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional hilbert space[J]. Physical Review Letters, 2019, 123(25): 250503. [147] HUH J, GUERRESCHI G G, PEROPADRE B, et al. Boson sampling for molecular vibronic spectra[J]. Nature Photonics, 2015, 9(9): 615-620. [148] BROD D J, GALVÃO E F, CRESPI A, et al. Photonic implementation of boson sampling: a review[J]. Advanced Photonics, 2019, 1(3): 34001. [149] CHEN Y Y, FINK M, STEINLECHNER F, et al. Hong-Ou-Mandel interferometry on a biphoton beat note[J]. NPJ Quantum Information, 2019, 5: 43. [150] SHI H, ZHANG Z, PIRANDOLA S, et al. Entanglement-assisted absorption spectroscopy[J]. Physical Review Letters, 2020, 125(18): 180502. [151] LI J P, QIN J A, CHEN A, et al. Multiphoton graph states from a solid-state single-photon source[J]. ACS Photonics, 2020, 7(7): 1603-1610. [152] ISTRATI D, PILNYAK Y, LOREDO J C, et al. Sequential generation of linear cluster states from a single photon emitter[J]. Nature Communications, 2020, 11: 5501. [153] LIU R Z, QIAO Y K, ZHONG H S, et al. Eliminating temporal correlation in quantum-dot entangled photon source by quantum interference[EB/OL]. 2022: arXiv: 2212.13126. https://arxiv.org/abs/2212.13126 [154] LEÓN-MONTIEL R de J, SVOZILÍK J, TORRES J P, et al. Temperature-controlled entangled-photon absorption spectroscopy[J]. Physical Review Letters, 2019, 123(2): 23601. [155] CHEN Y, HONG L, CHEN L. Quantum interferometric metrology with entangled photons[J/OL]. Frontiers in Physics, 2022, 10. https://www.frontiersin.org/articles/10.3389/fphy.2022.892519. DOI:10.3389/fphy.2022.892519. |
[1] | 宋长坤, 黄晓莹, 陈英鑫, 喻颖, 余思远. 半导体单量子点的分子束外延生长及调控[J]. 人工晶体学报, 2023, 52(6): 982-996. |
[2] | 李秉欣, 丁元丰, 芦红. 单晶α-Sn薄膜的外延生长及输运性质研究进展[J]. 人工晶体学报, 2023, 52(6): 1025-1035. |
[3] | 梁潇, 李思琦, 王中伟, 邵鹏飞, 陈松林, 陶涛, 谢自力, 刘斌, 陈敦军, 郑有炓, 张荣, 王科. 分子束外延高Al组分AlGaN薄膜及Si掺杂研究[J]. 人工晶体学报, 2023, 52(5): 783-790. |
[4] | 刘欢, 邵鹏飞, 陈松林, 周辉, 李思琦, 陶涛, 谢自力, 刘斌, 陈敦军, 郑有炓, 张荣, 王科. 金属调制分子束外延生长氮化铝薄膜[J]. 人工晶体学报, 2023, 52(5): 878-885. |
[5] | 任怡静, 马新国, 张锋, 陆晶晶, 张力, 王晗. BaTiO3薄膜的制备及其在电光调制器的应用[J]. 人工晶体学报, 2023, 52(4): 688-700. |
[6] | 谢景龙, 袁国文, 廖俊杰, 潘睿, 樊星, 张微微, 袁紫媛, 李晨, 高力波, 芦红. 石墨烯上远程外延Ge纳米柱[J]. 人工晶体学报, 2022, 51(9-10): 1769-1776. |
[7] | 蔡文为, 刘祥炜, 王浩, 汪建元, 郑力诚, 王永嘉, 周颖慧, 杨旭, 李金钗, 黄凯, 康俊勇. 生长气压对分子束外延β-Ga2O3薄膜特性的影响[J]. 人工晶体学报, 2022, 51(7): 1152-1157. |
[8] | 常梦琳, 樊星, 张微微, 姚金山, 潘睿, 李晨, 芦红. 利用Al/AlAs中间层调控GaAs在Si(111)上外延生长的研究[J]. 人工晶体学报, 2022, 51(11): 1815-1822. |
[9] | 蒋冲, 王一, 丁召, 黄延彬, 罗子江, 李志宏, 李耳士, 郭祥. 分子束外延生长过程中GaAs(001)表面铝液滴的扩散成核过程[J]. 人工晶体学报, 2021, 50(2): 283-289. |
[10] | 王一, 李志宏, 丁召, 杨晨, 罗子江, 王继红, 郭祥. 基于液滴外延法的Al(In)纳米结构在GaAs(001)的形成机制[J]. 人工晶体学报, 2021, 50(12): 2225-2231. |
[11] | 孔金丞, 李艳辉, 杨春章, 杨晋, 覃钢, 陈卫业, 陈逍玄, 任洋, 王善力, 胡旭, 王向前, 李雄军, 赵俊. 昆明物理研究所分子束外延碲镉汞薄膜技术进展[J]. 人工晶体学报, 2020, 49(12): 2221-2229. |
[12] | 袁紫媛, 潘睿, 夏顺吉, 魏炼, 叶佳佳, 李晨, 陈延峰, 芦红. 硅基上Si1-xGex合金的外延生长及性能研究[J]. 人工晶体学报, 2020, 49(11): 2178-2193. |
[13] | 高汉超;尹志军;张朱峰. 100 mm GaAs PHEMT外延材料生长稳定性控制研究[J]. 人工晶体学报, 2015, 44(2): 567-570. |
[14] | 郝瑞亭;郭杰;刘颖;缪彦美;徐应强. GaSb/GaAs异质结热光伏电池材料的MBE生长[J]. 人工晶体学报, 2014, 43(5): 1076-1079. |
[15] | 王科范;王珊;谷城. δ掺杂Si对InAs/GaAs量子点太阳电池的影响[J]. 人工晶体学报, 2014, 43(12): 3151-3156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||