[1] 徐 军, 徐晓东, 苏良碧. 掺镱激光晶体材料[M]. 上海: 上海科学普及出版社, 2005. XU J, XU X D, DU L B, et al. Ytterbium doped laser crystal material[M]. Shanghai: Shanghai Science Popularization Press, 2005 (in Chinese). [2] WANG H, PAN J, MENG Y A, et al. Advances of Yb∶CALGO laser crystals[J]. Crystals, 2021, 11(9): 1131. [3] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. [4] PATEL C K N, TIEN P K, MCFEE J H. CW high-power CO2-N2-He laser[J]. Applied Physics Letters, 1965, 7(11): 290-292. [5] BROMBERG J L, FRANKEN P. The laser in America, 1950-1970[J]. Physics Today, 1992, 45(3): 67-68. [6] SOROKIN P P, LANKARD J R. Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine[J]. IBM Journal of Research and Development, 1966, 10(2): 162-163. [7] SCHÄFER F P, SCHMIDT W, VOLZE J. Organic dye solution laser[J]. Applied Physics Letters, 1966, 9(8): 306-309. [8] SOFFER B H, MCFARLAND B B. Continuously tunable, narrow-band organic dye lasers[J]. Applied Physics Letters, 1967, 10(10): 266-267. [9] BOULON G. Fifty years of advances in solid-state laser materials[J]. Optical Materials, 2012, 34(3): 499-512. [10] HATCH S E, PARSONS W F, WEAGLEY R J. Hot-pressed polycrystalline CaF2∶Dy2+ laser[J]. Applied Physics Letters, 1964, 5(8): 153-154. [11] HECHT J. Short history of laser development[J]. Optical Engineering, 2010, 49(9): 091002. [12] PRONIN O, BRONS J, GRASSE C, et al. High-power 200 fs Kerr-lens mode-locked Yb∶YAG thin-disk oscillator[J]. Optics Letters, 2011, 36(24): 4746-4748. [13] MACHINET G, SEVILLANO P, GUICHARD F, et al. High-brightness fiber laser-pumped 68 fs-23 W Kerr-lens mode-locked Yb: CaF2 oscillator[J]. Optics Letters, 2013, 38(20): 4008. [14] SÉVILLANO P, GEORGES P, DRUON F, et al. 32-fs Kerr-lens mode-locked Yb∶CaGdAlO4 oscillator optically pumped by a bright fiber laser[J]. Optics Letters, 2014, 39(20): 6001-6004. [15] TIAN W L, YU C, ZHU J F, et al. Diode-pumped high power sub-100 fs Kerr-lens mode-locked Yb∶CaYAlO4 laser with 1.85 MW peak power[J]. Optics Express,2019,15(27): 21448-21454 [16] WANG Y R, SU X C, XIE Y Y, et al. 17.8 fs broadband kerr-lens mode-locked Yb∶CALGO oscillator[J]. Optics Letters, 2021, 46(8): 1892-1895. [17] LOIKO P, BECKER P, BOHATY L, et al. Sellmeier equations, group velocity dispersion, and thermo-optic dispersion formulas for CaLnAlO4 (Ln=Y, Gd) laser host crystals[J]. Optics Letters, 2017, 42(12): 2275-2278. [18] DRUON F, OLIVIER M, BALEMBOIS F, et al. Yb∶CaGdAlO4 laser under high pumping power: high performances and singularities[C]//SPIE LASE. Proc SPIE 8959, Solid State Lasers XXIII: Technology and Devices, San Francisco, California, USA. 2014, 8959: 263-268. [19] BOUDEILE J, DRUON F, HANNA M, et al. Continuous-wave and femtosecond laser operation of Yb∶CaGdAlO4 under high-power diode pumping[J]. Optics Letters, 2007, 32(14): 1962-1964. [20] TALIK E, KISIELEWSKI J, ZAJDEL P, et al. XPS spectroscopy, structural, magnetic and dielectric investigations of CaGdAlO4 and Yb∶CaGdAlO4 single crystals[J]. Optical Materials, 2019, 91: 355-362. [21] GAO Z Y, ZHU J F, WANG J L, et al. Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb∶CaYAlO4 laser[J]. Photonics Research, 2015, 3(6): 335. [22] PETIT J, GOLDNER P, VIANA B. Laser emission with low quantum defect in Yb∶CaGdAlO4[J]. Optics Letters, 2005, 30(11): 1345-1347. [23] 中国科学技术协会. 面向未来的科技: 2021重大科学问题、工程技术难题及产业技术问题解读[M]. 北京: 中国科学技术出版社, 2021. CHINA ASSOCIATION FOR SCIENCE AND TECHNOLOGY. Interpretation of major scientific problem, engineering technical problem and industrial technical problems of science and technology 2021 for the future[M]. Beijing: Science and Technology Press of China, 2021 (in Chinese). [24] 刘 锋, 陈昆峰, 彭 超, 等. 大尺寸晶体快速生长理论与技术的研究进展[J]. 人工晶体学报, 2022, 51(S1): 1732-1744. LIU F, CHEN K F, PENG C, et al. Advance in theory and technology of rapid growth of large-size crystals[J]. Journal of Synthetic Crystals, 2022, 51(S1): 1732-1744 (in Chinese). [25] DI J Q, XU X D, XIA C T, et al. Crystal growth, polarized spectra, and laser performance of Yb∶CaGdAlO4 crystal[J]. Laser Physics, 2016, 26(4): 045803. [26] JAFFRe S A, RICAUD S, SUGANUMA A, et al. Yb∶CALGO as material for high power ultrafast laser and focus on thermal conductivity variation[C]//SPIE OPTO. Proc SPIE 8621, Optical Components and Materials X, San Francisco, California, USA. 2013, 8621: 395-401. [27] JAFFRèS A, RICAUD S, SUGANUMA A, et al. Thermal conductivity versus Yb3 concentration in Yb∶CALGO: a material for high power ultrafast laser[C]//2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. May 12-16, 2013, Munich, Germany. IEEE, 2014: 1. [28] ZHANG N, WANG H Y, YIN Y Q, et al. Cracking mechanism and spectral properties of Er, Yb∶CaGdAlO4 crystals grown by the LHPG method[J]. CrystEngComm, 2020, 22(5): 955-960. [29] WIERZBICKA E, MALINOWSKA A, WIERZCHOWSKI W, et al. Investigation of structural defects in ytterbium doped calcium gadolinum aluminate crystals by means of the synchrotron and conventional diffraction topography[J]. Thin Solid Films, 2017, 643: 16-23. [30] HU Q Q, JIA Z T, TANG C, et al. The origin of coloration of CaGdAlO4 crystals and its effect on their physical properties[J]. CrystEngComm, 2017, 19(3): 537-545. [31] BEIL K, DEPPE B, KRÄNKEL C. Yb∶CaGdAlO4 thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range[J]. Optics Letters, 2013, 38(11): 1966-1968. [32] KRUCZEK M, TALIK E, PAWLAK D, et al. X-ray photoelectron spectroscopy studies of PrAlO3 crystals before and after thermal treatment[J]. Optics express, 22(10), 11884-11891. [33] PETIT J, GOLDNER P, VIANA B, et al. Quest of athermal solid state laser: case of Yb∶CaGdAlO4[C]//SPIE Proceedings, Solid State Lasers and Amplifiers Ⅱ. Strasbourg, France. SPIE, 2006: 619003. [34] AKBARI R, LOIKO P, MAJOR A. Thermal lensing in diode-pumped Yb∶CALGO and Yb∶KGW lasers[C]//Solid State Lasers XXIX: Technology and Devices. February 1-6, 2020. San Francisco, USA. SPIE, 2020, 11259: 112591 W. [35] GRIEBNER U, PETROV V, PETERMANN K, et al. Passively mode-locked Yb∶Lu2O3 laser [C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies. Optica Publishing Group, 2004: CTuCC2. [36] KULESHOV N V, LAGATSKY A A, PODLIPENSKY A V, et al. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2[J]. Optics Letters, 1997, 22(17): 1317-1319. [37] LOIKO P, DRUON F, GEORGES P, et al. Thermo-optic characterization of Yb∶CaGdAlO4 laser crystal[J]. Optical Materials Express, 2014, 4(11): 2241. [38] SHEN Y J, MENG Y A, FU X, et al. Dual-wavelength vortex beam with high stability in a diode-pumped Yb∶CaGdAlO4 laser[J]. Laser Physics Letters, 2018, 15(5): 055803. [39] DRUON F, OLIVIER M, JAFFRÈS A, et al. Magic mode switching in Yb∶CaGdAlO4 laser under high pump power[J]. Optics Letters, 2013, 38(20): 4138-4141. [40] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. [41] KELLER U, MILLER D A, BOYD G D, et al. Solid-state low-loss intracavity saturable absorber for Nd∶YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Optics Letters, 1992, 17(7): 505-507. [42] DIDDAMS S, VAHALA K, UDEM T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 2020, 369: eaay3676. [43] ZHENG J Q, CONG Z H, LIU Z J, et al. Recent trend of high repetition rate ultrashort laser pulse generation and frequency conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008. [44] JANG Y S, KIM S W. Distance measurements using mode-locked lasers: a review[J]. Nanomanufacturing and Metrology, 2018, 1(3): 131-147. [45] MAYER A S, PHILLIPS C R, KELLER U. Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal[J]. Nature Communications, 2017, 8: 1673. [46] VIANA B, PETIT J, GOLDNER P, et al. 47 fs in diode-pumped Yb∶CaGdAlO4[C]//SPIE Photonics Europe. Proc SPIE 6190, Solid State Lasers and Amplifiers Ⅱ, Strasbourg, France. 2006, 6190: 619001. [47] YANG J F, WANG Z H, SONG J J, et al. Diode-pumped 10 W femtosecond Yb∶CALGO laser with high beam quality[J]. High Power Laser Science and Engineering, 2021, 9: e33. [48] WANG S, WANG Y B, FENG G Y, et al. Harmonically mode-locked Yb∶CALGO laser pumped by a single-mode 12 W laser diode[J]. Optics Express, 2018, 26(2): 1521. [49] 令维军. 超短激光脉冲产生与放大的有关物理技术及频率变换研究[D]. 北京: 中国科学院物理研究所, 2005. LING W J. Study on physical technology and frequency conversion of ultrashort laser pulse generation and amplification[D].Beijing: Institute of Physics, Chinese Academy of Sciences, 2005 (in Chinese). [50] 高子叶. 激光二极管泵浦新型掺镱全固态飞秒激光器[D]. 西安: 西安电子科技大学, 2016. GAO Z Y. Diode-pumped novel all-solid-state Yb femtosecond lasers[D]. Xi'an: Xidian University, 2016 (in Chinese). [51] SPENCE D E, KEAN P N, SIBBETT W. 60-fsec pulse generation from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44. [52] MENG X H, BAN X N, LV C, et al. 95 fs pulses with 1.21 MW peak power from diode-pumped ultrafast Yb∶CaGdAlO4 laser using an additional Kerr medium[J]. Optics Communications, 2021, 498: 127246. [53] KIM D Y, PARK B J, LEE S Y, et al. High-power 50 fs kerr-lens mode-locked Yb∶CALGO oscillator[J]. Optics & Laser Technology, 2023, 159: 109019. [54] MANJOORAN S, MAJOR A. Diode-pumped 45 fs Yb∶CALGO laser oscillator with 1.7 MW of peak power[J]. Optics Letters, 2018, 43(10): 2324-2327. [55] RICAUD S, JAFFRES A, LOISEAU P, et al. Yb∶CaGdAlO4 thin-disk laser[J]. Optics Letters, 2011, 36(21): 4134-4136. [56] RICAUD S, JAFFRES A, WENTSCH K, et al. Femtosecond Yb∶CaGdAlO4 thin-disk oscillator[J]. Optics Letters, 2012, 37(19): 3984-3986. [57] MODSCHING N, PARADIS C, LABAYE F, et al. Kerr lens mode-locked Yb∶CALGO thin-disk laser[J]. Optics Letters, 2018, 43(4): 879-882. [58] 伍圆军, 高妍琦, 华怡林, 等. 大能量全固态再生放大器研究进展[J]. 强激光与粒子束, 2020, 32(11): 76-86. WU Y J, GAO Y Q, HUA Y L, et al. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32(11): 76-86 (in Chinese). [59] MURRAY J E, LOWDERMILK W H. Nd∶YAG regenerative amplifier[J]. Journal of Applied Physics, 1980, 51(7): 3548-3556. [60] 白 川, 田文龙, 王阁阳, 等. 高重频全固态掺镱飞秒激光放大器研究进展[J]. 中国激光, 2021, 48(5): 82-97. BAI C, TIAN W L, WANG G Y, et al. Progress on Yb-doped all-solid-state femtosecond laser amplifier with high repetition rate[J]. Chinese Journal of Lasers, 2021, 48(5): 82-97 (in Chinese). [61] CARACCIOLO E, KEMNITZER M, GUANDALINI A, et al. High pulse energy multiwatt Yb∶CaAlGdO4 and Yb∶CaF2 regenerative amplifiers[J]. Optics Express, 2014, 22(17): 19912. [62] WANG W Z, PU T, WU H, et al. High-power Yb∶CALGO regenerative amplifier and 30 fs output via multi-plate compression[J]. Optics Express, 2022, 30(12): 22153. [63] WANG G Y, BAI C, ZHENG L, et al. MHz repetition rate femtosecond Yb∶CaGdAlO4 regenerative amplifier generating 20-W 168-fs pulses[J]. IEEE Photonics Technology Letters, 2023, 35(4): 171-174. |