[1] 陆智淼, 蔡 力, 温激鸿, 等. 基于五模材料的圆柱声隐身斗篷坐标变换设计[J]. 物理学报, 2016, 65(17): 174301. LU Z M, CAI L, WEN J H, et al. Research on coordinate transformation design of a cylinderical acoustic cloak with pentamode materials[J]. Acta Physica Sinica, 2016, 65(17): 174301 (in Chinese). [2] BURRA S, KAR A. Nonlinear stereophonic acoustic echo cancellation using sub-filter based adaptive algorithm[J]. Digital Signal Processing, 2022, 121: 103323. [3] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [4] OLSSON R H, EL-KADY I. Microfabricated phononic crystal devices and applications[J]. Measurement Science and Technology, 2009, 20(1): 012002. [5] ZHANG H, XIAO Y, WEN J H, et al. Ultra-thin smart acoustic metasurface for low-frequency sound insulation[J]. Applied Physics Letters, 2016, 108(14): 141902. [6] LU M H, FENG L, CHEN Y F. Phononic crystals and acoustic metamaterials[J]. Materials Today, 2009, 12(12): 34-42. [7] SUKHOVICH A, JING L, PAGE J H. Negative refraction and focusing of ultrasound in two-dimensional phononic crystals[J]. Physical Review B, 2008, 77: 014301. [8] YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Applied Physics Letters, 2010, 96(4): 041906. [9] CIABURRO G, IANNACE G. Membrane-type acoustic metamaterial using cork sheets and attached masses based on reused materials[J]. Applied Acoustics, 2022, 189: 108605. [10] MA F Y, WU JIU HUI, HUANG M. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation[J]. The European Physical Journal Applied Physics, 2015, 71(3): 30504. [11] 梅 军, 马冠聪, 杨 旻, 等. 暗声学超材料研究[J]. 物理, 2012, 41(7): 425-433. MEI J, MA G C, YANG M, et al. Dark acoustic metamaterials[J]. Physics, 2012, 41(7): 425-433 (in Chinese). [12] ZHOU G J, WU J H, LU K, et al. Broadband low-frequency membrane-type acoustic metamaterials with multi-state anti-resonances[J]. Applied Acoustics, 2020, 159: 107078. [13] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301. [14] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Scaling of membrane-type locally resonant acoustic metamaterial arrays[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2784-2792. [15] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials[J]. Journal of Applied Physics, 2010, 108(11): 114905. [16] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses[J]. Journal of Applied Physics, 2011, 110(12): 124903. [17] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Membrane-type metamaterials: transmission loss of multi-celled arrays[J]. Journal of Applied Physics, 2011, 109(10): 104902. [18] CAO D X, HU W H, GAO Y H, et al. Vibration and energy harvesting performance of a piezoelectric phononic crystal beam[J]. Smart Materials and Structures, 2019, 28(8): 085014. [19] CHENG Y, ZHOU C, YUAN B G, et al. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances[J]. Nature Materials, 2015, 14(10): 1013-1019. [20] RAGUIN L, GAIFFE O, SALUT R, et al. Dipole states and coherent interaction in surface-acoustic-wave coupled phononic resonators[J]. Nature Communications, 2019, 10(1): 4583. [21] WU J H. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13): 68. [22] DONG H W, SU X X, WANG Y S, et al. Topology optimization of two-dimensional asymmetrical phononic crystals[J]. Physics Letters A, 2014, 378(4): 434-441. [23] 贺子厚, 赵静波, 姚 宏, 等. 薄膜底面Helmholtz腔声学超材料的隔声性能[J]. 物理学报, 2019, 68(21): 214302. HE Z H, ZHAO J B, YAO H, et al. Sound insulation performance of Helmholtz cavity with thin film bottom[J]. Acta Physica Sinica, 2019, 68(21): 214302 (in Chinese). [24] TAN Z H, SUN X W, TIAN M, et al. The mechanism of bandgap opening and merging in 2D spherical phononic crystals[J]. Physics Letters A, 2021, 405: 127432. [25] 朱哲民, 龚秀芬, 杜功焕. 声学基础[M]. 第2版. 南京: 南京大学出版社, 2001. ZHU Z M, GONG X F, DU G H. Fundamentals of acoustics[M]. 2nd Ed. Nanjing: Nanjing University Press, 2001 (in Chinese). [26] ZHANG D B, ZHAO J F, BONELLO B, et al. Air-coupled method to investigate the lowest-order antisymmetric Lamb mode in stubbed and air-drilled phononic plates[J]. AIP Advances, 2016, 6(8): 085021. [27] LANGFELDT F, GLEINE W. Optimizing the bandwidth of plate-type acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2020, 148(3): 1304. [28] EDWARDS W T, CHANG C M, MCKNIGHT G, et al. Transmission loss and dynamic response of hierarchical membrane-type acoustic metamaterials[J]. Journal of Vibration and Acoustics, 2020, 142(2): 021007. [29] FAHY F, GARDONIO P. Sound and structural vibration-radiation, transmission and response[J]. Noise Control Engineering Journal, 2007, 55(3): 373. [30] LANGFELDT F, GLEINE W. Membrane- and plate-type acoustic metamaterials with elastic unit cell edges[J]. Journal of Sound and Vibration, 2019, 453: 65-86. [31] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review B, 1961, 124(6): 1866-1878. [32] POTYOMINA L G. Double-humped phonon resonance in doubly resonant vibration systems: phonon metamaterials analogy with doubly resonant electromagnetic structures[J]. Physical Review B, 2020, 102(17): 174315. [33] HUANG T Y, SHEN C, JING Y. Membrane- and plate-type acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2016, 139(6): 3240-3250. |