
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1811-1822.DOI: 10.16553/j.cnki.issn1000-985x.2025.0157
收稿日期:2025-07-23
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
毛江高,博士,研究员。E-mail:mjg@fjirsm.ac.cn
作者简介:孔芳(1982—),女,安徽省人,博士,研究员。E-mail:kongfang@fjirsm.ac.cn基金资助:
KONG Fang1(
), HE Tiantian1,2, MAO Jianggao1(
)
Received:2025-07-23
Online:2025-10-20
Published:2025-11-11
摘要: 利用水热合成法获得了首例亚碲钼酸钾非线性光学晶体K6H4(Mo3Te4O18)2(MoO6)(H2O)(KMTO),其结晶于极性的P3空间群,结构由[Mo3Te4O18]二维层构成,层间有畸变的MoO6八面体、钾离子和结晶水支撑。非线性光学测试结果表明,KMTO的粉末倍频强度约为KDP的3倍,且可实现相位匹配。变温单晶X射线衍射、高精度DSC、变温倍频强度等测试发现,KMTO在176 ℃左右发生了单晶到单晶的相变,相变前、后,基本骨架没有发生较大变化,但其结构对称性发生了根本性的转变,空间群由极性的P3转变为中心的P-3,倍频强度在相变过程中逐渐减弱直至消失。当用半径更大的铯离子取代KMTO中的钾离子时,由于层间空间位阻增大,MoO6八面体被移除,得到了新型亚碲钼酸化合物Cs2(Mo3Te4O18)(H2O)(P-1)。有趣的是,这三种结构(P3、P-3和P-1)的基本骨架都为[Mo3Te4O18]二维层,其结构对称性主要由层间基团的对称性决定。该工作不仅开发了首例亚碲钼酸钾非线性光学材料,还利用多种原位表征方法,研究了材料的构效关系,为新型二阶非线性光学晶体的设计合成提供实验参考。
中图分类号:
孔芳, 何天天, 毛江高. 亚碲钼酸钾晶体的设计合成与二阶非线性光学性能研究[J]. 人工晶体学报, 2025, 54(10): 1811-1822.
KONG Fang, HE Tiantian, MAO Jianggao. Potassium Molybdenum Tellurite Crystals: Design, Synthesis, and Second-Order Nonlinear Optical Properties[J]. Journal of Synthetic Crystals, 2025, 54(10): 1811-1822.
| Formula | K6H4(Mo3Te4O18)2(MoO6)(H2O) | K6H4(Mo3Te4O18)2(MoO6)(H2O) | Cs2(Mo3Te4O18)(H2O) |
|---|---|---|---|
| Formula weight | 2 621.03 | 2 621.03 | 1 370.04 |
| T/K | 293 | 500 | 293 |
| Space group | P3 | P-3 | P-1 |
| a/Å | 12.042 7(2) | 12.075 8(3) | 8.589 0(4) |
| b/Å | 12.042 7(2) | 12.075 8(3) | 11.910 3(6) |
| c/Å | 7.890 9(3) | 8.027 7 | 11.924 3(4) |
| α/(°) | 90 | 90 | 60.108(4) |
| β/(°) | 90 | 90 | 70.901(4) |
| γ/(°) | 120 | 120 | 70.002(4) |
| V/nm3 | 991.07(4) | 1 013.80(6) | 975.21(7) |
| Z | 1 | 1 | 2 |
| Dc/(g·cm-3) | 4.392 | 4.283 | 4.666 |
| θ range/(°) | 2.58~30.43 | 2.54~24.98 | 2.57~26.37 |
| Collected reflections | 23 394 | 8 192 | 14 192 |
| Unique reflections | 4 044 | 1 203 | 3978 |
| Data/restraints/parameters | 4 044/1/208 | 1 203/0/103 | 3 978/0/253 |
| Absorption correction /mm-1 | 8.676 | 8.481 | 11.530 |
| Rint | 0.079 7 | 0.038 5 | 0.060 8 |
| R [I>2σ(I)] | 0.041 5, 0.082 3 | 0.035 2, 0.089 8 | 0.033 2, 0.077 4 |
| R[all data] | 0.045 6, 0.084 5 | 0.037 9, 0.091 1 | 0.038 2, 0.080 3 |
| Goodness of fit | 1.053 | 1.122 | 1.055 |
| Largest diff. peak and hole/(e·Å-3) | 2.66 and -2.76 | 2.76 and -1.28 | 2.416 and -2.042 |
| Flack parameter | 0.41(5) | — | — |
| CCDC/ICSD | 2474702 | 2474703 | 2474701 |
表1 晶体结构数据
Table 1 Data of crystal structures
| Formula | K6H4(Mo3Te4O18)2(MoO6)(H2O) | K6H4(Mo3Te4O18)2(MoO6)(H2O) | Cs2(Mo3Te4O18)(H2O) |
|---|---|---|---|
| Formula weight | 2 621.03 | 2 621.03 | 1 370.04 |
| T/K | 293 | 500 | 293 |
| Space group | P3 | P-3 | P-1 |
| a/Å | 12.042 7(2) | 12.075 8(3) | 8.589 0(4) |
| b/Å | 12.042 7(2) | 12.075 8(3) | 11.910 3(6) |
| c/Å | 7.890 9(3) | 8.027 7 | 11.924 3(4) |
| α/(°) | 90 | 90 | 60.108(4) |
| β/(°) | 90 | 90 | 70.901(4) |
| γ/(°) | 120 | 120 | 70.002(4) |
| V/nm3 | 991.07(4) | 1 013.80(6) | 975.21(7) |
| Z | 1 | 1 | 2 |
| Dc/(g·cm-3) | 4.392 | 4.283 | 4.666 |
| θ range/(°) | 2.58~30.43 | 2.54~24.98 | 2.57~26.37 |
| Collected reflections | 23 394 | 8 192 | 14 192 |
| Unique reflections | 4 044 | 1 203 | 3978 |
| Data/restraints/parameters | 4 044/1/208 | 1 203/0/103 | 3 978/0/253 |
| Absorption correction /mm-1 | 8.676 | 8.481 | 11.530 |
| Rint | 0.079 7 | 0.038 5 | 0.060 8 |
| R [I>2σ(I)] | 0.041 5, 0.082 3 | 0.035 2, 0.089 8 | 0.033 2, 0.077 4 |
| R[all data] | 0.045 6, 0.084 5 | 0.037 9, 0.091 1 | 0.038 2, 0.080 3 |
| Goodness of fit | 1.053 | 1.122 | 1.055 |
| Largest diff. peak and hole/(e·Å-3) | 2.66 and -2.76 | 2.76 and -1.28 | 2.416 and -2.042 |
| Flack parameter | 0.41(5) | — | — |
| CCDC/ICSD | 2474702 | 2474703 | 2474701 |
| Bond | Length/Å | Bond | Length/Å |
|---|---|---|---|
| K6H4(Mo3Te4O18)2(MoO6)(H2O) (P3) | |||
| Mo(1)—O(2)#1 | 1.762(9) | Mo(3)—O(3) | 2.305(9) |
| Mo(1)—O(2)#2 | 1.762(9) | Mo(3)—O(7)#4 | 2.318(9) |
| Mo(1)—O(2) | 1.762(9) | Te(1)—O(6) | 1.936(9) |
| Mo(1)—O(1)#1 | 2.111(10) | Te(1)—O(6)#5 | 1.936(9) |
| Mo(1)—O(1) | 2.111(10) | Te(1)—O(6)#3 | 1.936(9) |
| Mo(1)—O(1)#2 | 2.111(10) | Te(2)—O(4) | 1.871(9) |
| Mo(2)—O(14) | 1.726(10) | Te(2)—O(4)#6 | 1.871(9) |
| Mo(2)—O(10) | 1.765(10) | Te(2)—O(4)#4 | 1.871(9) |
| Mo(2)—O(3) | 1.879(9) | Te(3)—O(8) | 1.859(10) |
| Mo(2)—O(6) | 2.005(8) | Te(3)—O(11) | 1.956(9) |
| Mo(2)—O(5) | 2.204(9) | Te(3)—O(12)#5 | 1.974(11) |
| Mo(2)—O(8)#3 | 2.261(9) | Te(3)—O(5) | 2.516(9) |
| Mo(3)—O(13) | 1.680(10) | Te(4)—O(7) | 1.798(10) |
| Mo(3)—O(9) | 1.709(9) | Te(4)—O(12) | 1.919(11) |
| Mo(3)—O(5) | 1.857(9) | Te(4)—O(11)#6 | 2.019(9) |
| Mo(3)—O(4) | 1.972(9) | Te(4)—O(3) | 2.325(9) |
| K6H4(Mo3Te4O18)2(MoO6)(H2O) (P-3) | |||
| Mo(1)—O(7)#1 | 1.668(8) | Mo(2)—O(1)#6 | 2.278(6) |
| Mo(1)—O(7)#2 | 1.668(8) | Mo(2)—O(3) | 2.288(6) |
| Mo(1)—O(7)#3 | 1.668(8) | Te(1)—O(2)#7 | 1.898(6) |
| Mo(1)—O(7) | 2.213(9) | Te(1)—O(2)#8 | 1.898(6) |
| Mo(1)—O(7)#4 | 2.213(9) | Te(1)—O(2) | 1.898(6) |
| Mo(1)—O(7)#5 | 2.213(9) | Te(2)—O(3)#9 | 1.841(6) |
| Mo(2)—O(6) | 1.716(7) | Te(2)—O(4) | 1.932(6) |
| Mo(2)—O(5) | 1.732(6) | Te(2)—O(4)#9 | 1.980(6) |
| Mo(2)—O(1) | 1.860(6) | Te(2)—O(1) | 2.459(6) |
| Mo(2)—O(2) | 1.992(6) | ||
| Cs2(Mo3Te4O18)(H2O) (P-1) | |||
| Mo(1)—O(13) | 1.702(5) | Mo(3)—O(8)#3 | 2.330(5) |
| Mo(1)—O(12) | 1.885(5) | Te(1)—O(3) | 1.902(4) |
| Mo(1)—O(12)#1 | 2.252(5) | Te(1)—O(1) | 1.903(4) |
| Mo(2)—O(15) | 1.705(5) | Te(2)—O(4) | 1.921(5) |
| Mo(2)—O(6) | 1.887(5) | Te(2)—O(6)#2 | 2.333(4) |
| Mo(2)—O(11) | 2.256(4) | Te(3)—O(7) | 1.919(5) |
| Mo(3)—O(14) | 1.722(5) | Te(3)—O(8)#3 | 2.345(4) |
| Mo(3)—O(8) | 1.866(5) | Te(4)—O(10) | 1.925(4) |
| Mo(3)—O(5) | 2.243(4) | Te(4)—O(12)#1 | 2.325(4) |
| Mo(1)—O(18) | 1.734(4) | Te(1)—O(2) | 1.903(4) |
| Mo(1)—O(1) | 1.974(4) | Te(2)—O(5) | 1.844(5) |
| Mo(1)—O(9) | 2.279(4) | Te(2)—O(7)#3 | 2.004(4) |
| Mo(2)—O(16) | 1.733(4) | Te(3)—O(9) | 1.836(5) |
| Mo(2)—O(3) | 1.981(4) | Te(3)—O(10)#1 | 1.992(4) |
| Mo(2)—O(6)#2 | 2.286(5) | Te(4)—O(11) | 1.843(5) |
| Mo(3)—O(17) | 1.731(4) | Te(4)—O(4)#2 | 1.988(4) |
| Mo(3)—O(2) | 1.959(4) | ||
表2 化合物主要的键长数据
Table 2 Data of main bond lengths of the compounds
| Bond | Length/Å | Bond | Length/Å |
|---|---|---|---|
| K6H4(Mo3Te4O18)2(MoO6)(H2O) (P3) | |||
| Mo(1)—O(2)#1 | 1.762(9) | Mo(3)—O(3) | 2.305(9) |
| Mo(1)—O(2)#2 | 1.762(9) | Mo(3)—O(7)#4 | 2.318(9) |
| Mo(1)—O(2) | 1.762(9) | Te(1)—O(6) | 1.936(9) |
| Mo(1)—O(1)#1 | 2.111(10) | Te(1)—O(6)#5 | 1.936(9) |
| Mo(1)—O(1) | 2.111(10) | Te(1)—O(6)#3 | 1.936(9) |
| Mo(1)—O(1)#2 | 2.111(10) | Te(2)—O(4) | 1.871(9) |
| Mo(2)—O(14) | 1.726(10) | Te(2)—O(4)#6 | 1.871(9) |
| Mo(2)—O(10) | 1.765(10) | Te(2)—O(4)#4 | 1.871(9) |
| Mo(2)—O(3) | 1.879(9) | Te(3)—O(8) | 1.859(10) |
| Mo(2)—O(6) | 2.005(8) | Te(3)—O(11) | 1.956(9) |
| Mo(2)—O(5) | 2.204(9) | Te(3)—O(12)#5 | 1.974(11) |
| Mo(2)—O(8)#3 | 2.261(9) | Te(3)—O(5) | 2.516(9) |
| Mo(3)—O(13) | 1.680(10) | Te(4)—O(7) | 1.798(10) |
| Mo(3)—O(9) | 1.709(9) | Te(4)—O(12) | 1.919(11) |
| Mo(3)—O(5) | 1.857(9) | Te(4)—O(11)#6 | 2.019(9) |
| Mo(3)—O(4) | 1.972(9) | Te(4)—O(3) | 2.325(9) |
| K6H4(Mo3Te4O18)2(MoO6)(H2O) (P-3) | |||
| Mo(1)—O(7)#1 | 1.668(8) | Mo(2)—O(1)#6 | 2.278(6) |
| Mo(1)—O(7)#2 | 1.668(8) | Mo(2)—O(3) | 2.288(6) |
| Mo(1)—O(7)#3 | 1.668(8) | Te(1)—O(2)#7 | 1.898(6) |
| Mo(1)—O(7) | 2.213(9) | Te(1)—O(2)#8 | 1.898(6) |
| Mo(1)—O(7)#4 | 2.213(9) | Te(1)—O(2) | 1.898(6) |
| Mo(1)—O(7)#5 | 2.213(9) | Te(2)—O(3)#9 | 1.841(6) |
| Mo(2)—O(6) | 1.716(7) | Te(2)—O(4) | 1.932(6) |
| Mo(2)—O(5) | 1.732(6) | Te(2)—O(4)#9 | 1.980(6) |
| Mo(2)—O(1) | 1.860(6) | Te(2)—O(1) | 2.459(6) |
| Mo(2)—O(2) | 1.992(6) | ||
| Cs2(Mo3Te4O18)(H2O) (P-1) | |||
| Mo(1)—O(13) | 1.702(5) | Mo(3)—O(8)#3 | 2.330(5) |
| Mo(1)—O(12) | 1.885(5) | Te(1)—O(3) | 1.902(4) |
| Mo(1)—O(12)#1 | 2.252(5) | Te(1)—O(1) | 1.903(4) |
| Mo(2)—O(15) | 1.705(5) | Te(2)—O(4) | 1.921(5) |
| Mo(2)—O(6) | 1.887(5) | Te(2)—O(6)#2 | 2.333(4) |
| Mo(2)—O(11) | 2.256(4) | Te(3)—O(7) | 1.919(5) |
| Mo(3)—O(14) | 1.722(5) | Te(3)—O(8)#3 | 2.345(4) |
| Mo(3)—O(8) | 1.866(5) | Te(4)—O(10) | 1.925(4) |
| Mo(3)—O(5) | 2.243(4) | Te(4)—O(12)#1 | 2.325(4) |
| Mo(1)—O(18) | 1.734(4) | Te(1)—O(2) | 1.903(4) |
| Mo(1)—O(1) | 1.974(4) | Te(2)—O(5) | 1.844(5) |
| Mo(1)—O(9) | 2.279(4) | Te(2)—O(7)#3 | 2.004(4) |
| Mo(2)—O(16) | 1.733(4) | Te(3)—O(9) | 1.836(5) |
| Mo(2)—O(3) | 1.981(4) | Te(3)—O(10)#1 | 1.992(4) |
| Mo(2)—O(6)#2 | 2.286(5) | Te(4)—O(11) | 1.843(5) |
| Mo(3)—O(17) | 1.731(4) | Te(4)—O(4)#2 | 1.988(4) |
| Mo(3)—O(2) | 1.959(4) | ||
图3 沿b轴方向观察中心对称β-KMTO的结构视图(a)及[Mo3Te4O18]二维层(b)
Fig.3 Structure of centrosymmetric β-KMTO along the b axis (a) and [Mo3Te4O18] two-dimensional layer (a)
图4 沿b轴方向观察Cs2(Mo3Te4O18)(H2O)的结构视图(a)及[Mo3Te4O18]二维层(b)
Fig.4 Structural view of Cs2(Mo3Te4O18)(H2O) along the b axis (a) and [Mo3Te4O18] two-dimensional layer (b)
图5 KMTO(a)和Cs2(Mo3Te4O18)(H2O)(b)的TGA和DSC曲线,以及KMTO(c)的高分辨率DSC曲线
Fig.5 TGA and DSC curves of KMTO (a) and Cs2(Mo3Te4O18)(H2O) (b), together with high-resolution DSC data for KMTO (c)
图6 不同温度的KTMO晶体的晶胞参数变化趋势(a)与原位单晶XRD图谱(b)
Fig.6 Temperature-dependent evolution (a) and in-situ single-crystal XRD patterns (b) of the unit-cell parameters in KTMO crystals
图9 Cs2(Mo3Te4O18)(H2O)(a)、(NH4)6(Mo2O7)(Mo3Te4O18)2(H2O)(b)、β-KMTO (P-3)(c)和α-KMTO (P3)(d)的双六元环
Fig.9 6-MPR in Cs2(Mo3Te4O18)(H2O) (a), (NH4)6(Mo2O7)(Mo3Te4O18)2(H2O) (b), β-KMTO (P-3) (c), and α-KMTO (P3) (d)
| Polar unit | Moment/D | |||
|---|---|---|---|---|
| x-component | y-component | z-component | Total magnitude | |
| K6H4(Mo3Te4O18)2(MoO6)(H2O) (P-3) | ||||
| Te(1)O3 | 0.00 | 0.00 | -11.26 | 11.26 |
| Te(2)O3 | 0.00 | 0.00 | 12.72 | 12.72 |
| Te(3)O4 | -0.53 | -1.26 | -9.30 | 9.4 |
| Te(3)O4 | -0.82 | 1.09 | -9.30 | 9.4 |
| Te(3)O4 | 1.35 | 0.17 | -9.30 | 9.4 |
| Te(4)O4 | -1.42 | -0.45 | 9.57 | 9.69 |
| Te(4)O4 | 0.32 | 1.45 | 9.57 | 9.69 |
| Te(4)O4 | 1.10 | -1 | 9.57 | 9.69 |
| Mo(2)O6 | 3.25 | -0.4 | 3.02 | 4.46 |
| Mo(2)O6 | -1.28 | 3.01 | 3.02 | 4.46 |
| Mo(2)O6 | -1.97 | -2.61 | 3.02 | 4.46 |
| Mo(3)O6 | 3.32 | -3.53 | -4.15 | 6.38 |
| Mo(3)O6 | -4.71 | -1.11 | -4.15 | 6.38 |
| Mo(3)O6 | 1.39 | 4.64 | -4.15 | 6.38 |
| (Mo3Te4O18) | 0.00 | 0.00 | -1.13 | 1.62 |
| Mo(1)O6 | 0.00 | 0.00 | 5.96 | 5.96 |
| Net dipole moment (a unit cell) | 0.00 | 0.00 | 4.83 | 4.83 |
| K6H4(Mo3Te4O18)2(MoO6)(H2O) (P-3) | ||||
| Te(1)O3 | 0.00 | 0.00 | 12.09 | 12.09 |
| Te(1)O3 | 0.00 | 0.00 | -12.09 | 12.09 |
| Te(2)O4 | 0.92 | 1.06 | 9.12 | 9.23 |
| Te(2)O4 | -0.92 | -1.06 | -9.12 | 9.23 |
| Te(2)O4 | -1.34 | 0.27 | 9.13 | 9.24 |
| Te(2)O4 | 1.34 | -0.27 | -9.13 | 9.24 |
| Te(2)O4 | 0.45 | -1.33 | 9.13 | 9.24 |
| Te(2)O4 | -0.45 | 1.33 | -9.13 | 9.24 |
| Mo(2)O6 | 2.34 | 3.01 | -3.57 | 5.23 |
| Mo(2)O6 | 1.44 | -3.54 | -3.58 | 5.23 |
| Mo(2)O6 | -3.77 | 0.53 | -3.58 | 5.23 |
| Mo(2)O6 | 3.77 | -0.53 | 3.58 | 5.23 |
| Mo(2)O6 | -1.44 | 3.54 | 3.58 | 5.23 |
| Mo(2)O6 | -2.34 | -3.01 | 3.57 | 5.23 |
| (Mo3Te4O18) | 0.00 | 0.00 | 0.00 | 0.00 |
| Mo(1)O6 | 0.00 | 0.00 | ±8.64 | 8.64 |
| Net dipole moment (a unit cell) | 0.00 | 0.00 | 0.00 | 0.00 |
| Cs2(Mo3Te4O18)(H2O) (P-1) | ||||
| Te(1)O3 | 10.75 | -3.68 | -1.98 | 11.54 |
| Te(1)O3 | -10.75 | 3.68 | 1.98 | 11.54 |
| Te(2)O4 | -8.09 | 3.85 | 0.64 | 8.98 |
| Te(2)O4 | 8.09 | -3.85 | -0.64 | 8.98 |
| Te(3)O4 | 8.60 | -1.74 | -1.82 | 8.96 |
| Te(3)O4 | -8.60 | 1.74 | 1.82 | 8.96 |
| Te(4)O4 | 7.63 | -3.51 | -2.82 | 8.86 |
| Te(4)O4 | -7.63 | 3.51 | 2.82 | 8.86 |
| Mo(1)O6 | -3.91 | -0.51 | 5.21 | 6.54 |
| Mo(1)O6 | 3.91 | 0.51 | -5.21 | 6.54 |
| Mo(2)O6 | -2.78 | 5.24 | 0.63 | 5.96 |
| Mo(2)O6 | 2.78 | -5.24 | -0.63 | 5.96 |
| Mo(3)O6 | -5.36 | 0.51 | -2.36 | 5.87 |
| Mo(3)O6 | 5.36 | -0.51 | 2.36 | 5.87 |
| (Mo3Te4O18) | 0.00 | 0.00 | 0.00 | 0.00 |
| Net dipole moment (a unit cell) | 0.00 | 0.00 | 0.00 | 0.00 |
表3 TeO n (n=3,4)、MoO6、Mo3Te4O18的局域偶极矩,以及KMTO和Cs2Mo3Te4O18(H2O)的单胞净偶极矩
Table 3 Local dipole moments for the TeO n (n= 3, 4), MoO6, Mo3Te4O18 and the net dipole moment within a unit cell for KMTO and Cs2Mo3Te4O18(H2O)
| Polar unit | Moment/D | |||
|---|---|---|---|---|
| x-component | y-component | z-component | Total magnitude | |
| K6H4(Mo3Te4O18)2(MoO6)(H2O) (P-3) | ||||
| Te(1)O3 | 0.00 | 0.00 | -11.26 | 11.26 |
| Te(2)O3 | 0.00 | 0.00 | 12.72 | 12.72 |
| Te(3)O4 | -0.53 | -1.26 | -9.30 | 9.4 |
| Te(3)O4 | -0.82 | 1.09 | -9.30 | 9.4 |
| Te(3)O4 | 1.35 | 0.17 | -9.30 | 9.4 |
| Te(4)O4 | -1.42 | -0.45 | 9.57 | 9.69 |
| Te(4)O4 | 0.32 | 1.45 | 9.57 | 9.69 |
| Te(4)O4 | 1.10 | -1 | 9.57 | 9.69 |
| Mo(2)O6 | 3.25 | -0.4 | 3.02 | 4.46 |
| Mo(2)O6 | -1.28 | 3.01 | 3.02 | 4.46 |
| Mo(2)O6 | -1.97 | -2.61 | 3.02 | 4.46 |
| Mo(3)O6 | 3.32 | -3.53 | -4.15 | 6.38 |
| Mo(3)O6 | -4.71 | -1.11 | -4.15 | 6.38 |
| Mo(3)O6 | 1.39 | 4.64 | -4.15 | 6.38 |
| (Mo3Te4O18) | 0.00 | 0.00 | -1.13 | 1.62 |
| Mo(1)O6 | 0.00 | 0.00 | 5.96 | 5.96 |
| Net dipole moment (a unit cell) | 0.00 | 0.00 | 4.83 | 4.83 |
| K6H4(Mo3Te4O18)2(MoO6)(H2O) (P-3) | ||||
| Te(1)O3 | 0.00 | 0.00 | 12.09 | 12.09 |
| Te(1)O3 | 0.00 | 0.00 | -12.09 | 12.09 |
| Te(2)O4 | 0.92 | 1.06 | 9.12 | 9.23 |
| Te(2)O4 | -0.92 | -1.06 | -9.12 | 9.23 |
| Te(2)O4 | -1.34 | 0.27 | 9.13 | 9.24 |
| Te(2)O4 | 1.34 | -0.27 | -9.13 | 9.24 |
| Te(2)O4 | 0.45 | -1.33 | 9.13 | 9.24 |
| Te(2)O4 | -0.45 | 1.33 | -9.13 | 9.24 |
| Mo(2)O6 | 2.34 | 3.01 | -3.57 | 5.23 |
| Mo(2)O6 | 1.44 | -3.54 | -3.58 | 5.23 |
| Mo(2)O6 | -3.77 | 0.53 | -3.58 | 5.23 |
| Mo(2)O6 | 3.77 | -0.53 | 3.58 | 5.23 |
| Mo(2)O6 | -1.44 | 3.54 | 3.58 | 5.23 |
| Mo(2)O6 | -2.34 | -3.01 | 3.57 | 5.23 |
| (Mo3Te4O18) | 0.00 | 0.00 | 0.00 | 0.00 |
| Mo(1)O6 | 0.00 | 0.00 | ±8.64 | 8.64 |
| Net dipole moment (a unit cell) | 0.00 | 0.00 | 0.00 | 0.00 |
| Cs2(Mo3Te4O18)(H2O) (P-1) | ||||
| Te(1)O3 | 10.75 | -3.68 | -1.98 | 11.54 |
| Te(1)O3 | -10.75 | 3.68 | 1.98 | 11.54 |
| Te(2)O4 | -8.09 | 3.85 | 0.64 | 8.98 |
| Te(2)O4 | 8.09 | -3.85 | -0.64 | 8.98 |
| Te(3)O4 | 8.60 | -1.74 | -1.82 | 8.96 |
| Te(3)O4 | -8.60 | 1.74 | 1.82 | 8.96 |
| Te(4)O4 | 7.63 | -3.51 | -2.82 | 8.86 |
| Te(4)O4 | -7.63 | 3.51 | 2.82 | 8.86 |
| Mo(1)O6 | -3.91 | -0.51 | 5.21 | 6.54 |
| Mo(1)O6 | 3.91 | 0.51 | -5.21 | 6.54 |
| Mo(2)O6 | -2.78 | 5.24 | 0.63 | 5.96 |
| Mo(2)O6 | 2.78 | -5.24 | -0.63 | 5.96 |
| Mo(3)O6 | -5.36 | 0.51 | -2.36 | 5.87 |
| Mo(3)O6 | 5.36 | -0.51 | 2.36 | 5.87 |
| (Mo3Te4O18) | 0.00 | 0.00 | 0.00 | 0.00 |
| Net dipole moment (a unit cell) | 0.00 | 0.00 | 0.00 | 0.00 |
| [1] |
MUTAILIPU M, HAN J, LI Z, et al. Achieving the full-wavelength phase-matching for efficient nonlinear optical frequency conversion in C(NH2)3BF4 [J]. Nature Photonics, 2023, 17(8): 694-701.
DOI |
| [2] |
CHEN K C, LIN C S, PENG G, et al. LiNbTeO5: a high-performance multifunctional crystal material with a very large second-harmonic generation response and piezoelectric coefficient[J]. Chemistry of Materials, 2022, 34(1): 399-404.
DOI URL |
| [3] |
ZHOU J, YOU J Y, ZHAO Y M, et al. Van der Waals electrides[J]. Accounts of Chemical Research, 2024, 57(17): 2572-2581.
DOI URL |
| [4] | ZHANG Z P, LIU X, WANG R X, et al. Remarkable second harmonic generation response in (C5H6NO)+(CH3SO3)-: unraveling the role of hydrogen bond in thermal driven nonlinear optical switch[J]. Angewandte Chemie International Edition, 2024, 63(38): 202408551. |
| [5] | WANG X F, LENG X D, KUK Y, et al. Deep-ultraviolet transparent mixed metal sulfamates with enhanced nonlinear optical properties and birefringence[J]. Angewandte Chemie International Edition, 2024, 63(5): e202315434. |
| [6] | WU L L, LIN C S, TIAN H T, et al. Mg(C3O4H2)(H2O)2: a new ultraviolet nonlinear optical material derived from KBe2BO3F2 with high performance and excellent water-resistance[J]. Angewandte Chemie International Edition, 2024, 63(2): e202315647. |
| [7] |
ZHOU J J, WU H P, YU H W, et al. BaF2TeF2(OH)2: a UV nonlinear optical fluorotellurite material designed by band-gap engineering[J]. Journal of the American Chemical Society, 2020, 142(10): 4616-4620.
DOI URL |
| [8] |
LIU Q X, WU Q, WANG T Y, et al. Polymorphism of LiCdBO3: crystal structures, phase transitions and optical characterizations[J]. Chinese Journal of Structural Chemistry, 2023, 42(1): 100026.
DOI URL |
| [9] |
CHEN P F, HU C L, ZHANG M Z, et al. β-LaTeBO5 and RETeBO5 (RE = Y, Gd, Tb): explorations of new optical materials in the RE(iii)-Te(iv)-B-O system[J]. Inorganic Chemistry Frontiers, 2025, 12(7): 2638-2647.
DOI URL |
| [10] |
CHEN H, RAN M Y, ZHOU S H, et al. Simple yet extraordinary: super-polyhedra-built 3D chalcogenide framework of Cs5Ga9S16 with excellent infrared nonlinear optical performance[J]. Chinese Chemical Letters, 2023, 34(7): 107838.
DOI URL |
| [11] |
WANG W K, MEI D J, WEN S G, et al. Complex coordinated functional groups: a great genes for nonlinear optical materials[J]. Chinese Chemical Letters, 2022, 33(5): 2301-2315.
DOI URL |
| [12] |
LI P F, HU C L, LI B X, et al. From CdPb8(SeO3)4Br10 to Pb3(TeO3)Br4: the first tellurite bromide exhibiting an SHG response and mid-IR transparency[J]. Inorganic Chemistry Frontiers, 2023, 10(24): 7343-7350.
DOI URL |
| [13] |
LI P F, HU C L, LI Y F, et al. Hg4(Te2O5)(SO4): a giant birefringent sulfate crystal triggered by a highly selective cation[J]. Journal of the American Chemical Society, 2024, 146(11): 7868-7874.
DOI URL |
| [14] |
LI P F, HU C L, KONG F, et al. AAl(Te4O10) (A=Na, Ag) and K2Ga2(HTe6O16)(HTeO3): three aluminum/gallium tellurites with large birefringence and wide band gap[J]. Inorganic Chemistry, 2023, 62(22): 8494-8499.
DOI URL |
| [15] |
ZHAO S G, JIANG X X, HE R, et al. A combination of multiple chromophores enhances second-harmonic generation in a nonpolar noncentrosymmetric oxide: CdTeMoO6 [J]. Journal of Materials Chemistry C, 2013, 1(16): 2906-2912.
DOI URL |
| [16] |
CHANG H Y, KIM S W, HALASYAMANI P S. Polar hexagonal tungsten oxide (HTO) materials: (1) synthesis, characterization, functional properties, and structure-property relationships in A2(MoO3)3(SeO3) (A=Rb+ and Tl+) and (2) classification, structural distortions, and second-harmonic generating properties of known polar HTOs[J]. Chemistry of Materials, 2010, 22(10): 3241-3250.
DOI URL |
| [17] | HALASYAMANI P S. Asymmetric cation coordination in oxide materials: influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals[J]. ChemInform, 2004, 35(47): no. |
| [18] |
WU J H, ZHANG B, JIANG T K, et al. From Cs8Sb4Nb5O5F35 to Cs6Sb4Mo3O5F26: The first noncentrosymmetric fluoroantimonite with d0 transition metal[J]. Chinese Journal of Structural Chemistry, 2023, 42(1): 100016.
DOI URL |
| [19] |
HU Y L, WU C, JIANG X X, et al. Giant second-harmonic generation response and large band gap in the partially fluorinated mid-infrared oxide RbTeMo2O8F[J]. Journal of the American Chemical Society, 2021, 143(32): 12455-12459.
DOI URL |
| [20] |
LIANG M L, MA Y X, HU C L, et al. Ba(MoO2F)2(QO3)2 (Q = Se, Te): partial fluorination of MoO6 octahedra enabling two polar solids with strong and phase matchable SHG response[J]. Chemistry of Materials, 2020, 32(22): 9688-9695.
DOI URL |
| [21] |
JIN C G, HUANG L X, YANG J S, et al. Relationship between structure and cleavage behavior in the nonlinear optical crystal MnTeMoO6 [J]. Journal of Crystal Growth, 2015, 419: 25-30.
DOI URL |
| [22] |
ZHANG J J, TAO X T, SUN Y X, et al. Top-seeded solution growth, morphology, and properties of a polar crystal Cs2TeMo3O12 [J]. Crystal Growth & Design, 2011, 11(5): 1863-1868.
DOI URL |
| [23] |
WILKS P A. Reflection measurements: Reflectance spectroscopy [J]. Science, 1966, 154(3745): 143.
DOI URL |
| [24] |
KURTZ S K, PERRY T T. A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 1968, 39(8): 3798-3813.
DOI URL |
| [25] | RIGAKU C. Crystal clear version 1.3.5 [S]. Woodlands: Rigaku Corporation, 1999. |
| [26] | SHELDRICK G M. SHELXTL Version 5.1[S]. Madison: Bruker-AXS, 1998. |
| [27] | BROWN I D, ALTERMATT D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallographica Section B, 1985, 41(4): 244-247. |
| [28] | BRESE N E, O’KEEFFE M. Bond-valence parameters for solids[J]. Acta Crystallographica Section B, 1991, 47(2): 192-197. |
| [29] |
VIDYAVATHY, VIDYASAGAR K. Hydrothermal synthesis and characterization of a novel two-dimensional tellurite of molybdenum(VI), (NH4)6Mo8Te8O43·H2O[J]. Inorganic Chemistry, 1999, 38(15): 3458-3462.
DOI URL |
| [30] | Infrared spectra of inorganic compounds[Z]. Elsevier, 1971. |
| [31] |
IZUMI H K, KIRSCH J E, STERN C L, et al. Examining the out-of-center distortion in the [NbOF5]2- anion[J]. Inorganic Chemistry, 2005, 44(4): 884-895.
DOI URL |
| [32] |
MAGGARD P A, NAULT T S, STERN C L, et al. Alignment of acentric MoO3F3 3- anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl[J]. Journal of Solid State Chemistry, 2003, 175(1): 27-33.
DOI URL |
| [33] |
ZHOU D D, HU C L, ZHANG X W, et al. Noncentrosymmetric tellurite halides created by a depolymerization strategy: toward strong SHG intensity and wide bandgap[J]. Chemical Science, 2024, 15(47): 19920-19927.
DOI URL |
| [34] |
ZHAO S G, LUO J H, ZHOU P, et al. ZnTeMoO6: a strong second-harmonic generation material originating from three types of asymmetric building units[J]. RSC Advances, 2013, 3(33): 14000-14006.
DOI URL |
| [1] | 白志勇, 赵三根, 罗军华. 新型过渡金属氧氟化物非线性光学晶体研究进展[J]. 人工晶体学报, 2025, 54(10): 1687-1695. |
| [2] | 王晓洋, 刘丽娟. 深紫外KBBF薄片晶体的连续波激光倍频器设计[J]. 人工晶体学报, 2025, 54(10): 1732-1739. |
| [3] | 黄昌保, 胡倩倩, 朱志成, 李亚, 毛长宇, 徐俊杰, 吴海信, 倪友保. 中长波Cr2+/Fe2+∶CdSe激光晶体生长及元件制备[J]. 人工晶体学报, 2024, 53(4): 551-553. |
| [4] | 刘宏德, 王维维, 张中正, 郑大怀, 刘士国, 孔勇发, 许京军. 铌酸锂晶体的缺陷结构[J]. 人工晶体学报, 2024, 53(3): 355-371. |
| [5] | 刘青雄, 王天予, 刘孚安, 吴倩, 尹延如, 赫崇君, 高泽亮, 夏明军. 非线性光学晶体K3B6O10Br的生长与光电性能研究[J]. 人工晶体学报, 2023, 52(7): 1296-1301. |
| [6] | 程曦月, 秘汉相, 洪茂椿, 邓水全. 非线性光学原子响应理论及最新进展[J]. 人工晶体学报, 2023, 52(7): 1270-1285. |
| [7] | 陈建荣, 张杰, 师瑞泽, 石爽爽, 杨志奇. 晶体人生丨黄朝恩:从研发到成果转化的非线性“晶”彩人生[J]. 人工晶体学报, 2023, 52(12): 2089-2093. |
| [8] | 石爽爽, 王国影, 肖亚波, 王海丽, 陈建荣. CLBO单晶生长及性能研究[J]. 人工晶体学报, 2023, 52(12): 2146-2150. |
| [9] | 徐亚东. 晶体人生丨陶绪堂:从有机-无机复合材料走进多彩晶体世界[J]. 人工晶体学报, 2022, 51(9-10): 1519-1522. |
| [10] | 何楠, 公丕富, 林哲帅. A7MIIRE2(B5O10)3系列紫外非线性光学晶体的研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1598-1607. |
| [11] | 范慧歆, 罗敏, 叶宁. 含平面共轭构型的非线性光学晶体[J]. 人工晶体学报, 2022, 51(9-10): 1588-1597. |
| [12] | 熊希希;王世磊;贾宁;王善朋;陶绪堂. 大尺寸红外非线性光学晶体LiInSe2的生长与退火研究[J]. 人工晶体学报, 2020, 49(8): 1499-1504. |
| [13] | 陈金东;林晨升;叶宁. 磷属化物非线性光学晶体研究进展[J]. 人工晶体学报, 2020, 49(8): 1405-1411. |
| [14] | 陈毅;刘高佑;王瑞雪;杨超;杨科;密淑一;戴通宇;段小明;姚宝权;鞠有伦;王月珠. 非线性晶体应用于中长波红外固体激光器的研究进展[J]. 人工晶体学报, 2020, 49(8): 1379-1395. |
| [15] | 袁泽锐;窦云巍;陈莹;方攀;尹文龙;康彬. 大尺寸ZnGeP2单晶生长与大尺寸晶体器件制备[J]. 人工晶体学报, 2020, 49(8): 1491-1493. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS