
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1687-1695.DOI: 10.16553/j.cnki.issn1000-985x.2025.0183
收稿日期:2025-08-18
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
罗军华,博士,研究员。E-mail:jhluo@fjirsm.ac.cn
作者简介:白志勇(1992—),男,青海省人,博士,副研究员。E-mail:baizhiyong@fjirsm.ac.cn基金资助:
BAI Zhiyong1(
), ZHAO Sangen2, LUO Junhua1(
)
Received:2025-08-18
Online:2025-10-20
Published:2025-11-11
摘要: 非线性光学晶体是固体激光器的核心器件,广泛应用于可控核聚变、量子通信、高精度光谱分析等前沿领域。最近研究表明,具有4d0和5d0电子构型的过渡金属阳离子Zr4+、Hf4+、Nb5+和Ta5+具有较低的电负性,与高电负性的氟阴离子形成的化学键中的离子键成分增加,有利于拓宽光学带隙,同时其多面体保持了较强的几何畸变,对增强晶体的非线性光学效应和双折射性能发挥关键作用。此类过渡金属氧氟化物的光学透过范围能达到紫外甚至更短的深紫外光谱区,可能是潜在的紫外非线性光学晶体候选材料。本文介绍了基于这些过渡金属的氧氟化物多面体设计合成新型无机紫外透明非线性光学晶体的最新进展,总结了11种最新报道的此类非线性光学晶体,详细介绍了其晶体结构、光学性质(吸收截止边、光学带隙、倍频和双折射等),以及过渡金属的氧氟化物多面体对这些光学性质的影响机制。
中图分类号:
白志勇, 赵三根, 罗军华. 新型过渡金属氧氟化物非线性光学晶体研究进展[J]. 人工晶体学报, 2025, 54(10): 1687-1695.
BAI Zhiyong, ZHAO Sangen, LUO Junhua. Advancement of Novel Transition Metal Oxyfluoride Nonlinear Optical Crystals[J]. Journal of Synthetic Crystals, 2025, 54(10): 1687-1695.
| 化合物 | 空间群 | 配位多面体 | 倍频效应(×KDP) | 吸收截止边/nm | 光学带隙/eV | 双折射率 | 最短相位匹配波长/nm | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| ZrOF4H2 | I42d | [ZrO2F6] | 2.2 | <190 | >6.53 | 0.035@546 | 380 | [ |
| HfOF4H2 | I42d | [HfO2F6] | 1.8 | <190 | >6.53 | 0.026@546 | 400 | [ |
| ZrF2(SO4) | Pca21 | [ZrO4F4] | 3.2 | 206 | 6.02 | 0.074@546 | 340 | [ |
| HfF2(SO4) | Pca21 | [HfO4F4] | 2.5 | <190 | >6.53 | 0.058@546 | N.A. | [ |
| K3Ba2Zr6F31 | P63mc | [ZrF8] | 0.5 | <200 | >6.20 | 0.08@1064 | N.A. | [ |
| KBa3Zr2F14Cl | P4m2 | [ZrF7] | 1.0 | 194 | >6.20 | 0.11@550 | N.A. | [ |
| KBa3Hf2F14Cl | P4m2 | [HfF7] | 0.9 | 192.8 | >6.20 | 0.09@550 | N.A. | [ |
| Ba3Nb2O2F12(H2O)2 | Cmc21 | [NbOF6] | 0.9 | 290 | 4.88 | 0.19@546 | N.A. | [ |
| Ba0.5NbO2F2(H2O) | P62m | [NbO4F2] | 1.7 | 290 | 3.66 | 0.27@546 | N.A. | [ |
| K5Ta3OF18 | I4cm | [TaO2F4] | 2.8 | ~200 | 6.20 | 0.092@546 | N.A. | [ |
| Rb5Ta3OF18 | I4cm | [TaO2F4] | 2.6 | ~200 | 6.20 | 0.085@546 | N.A. | [ |
表1 本文讨论的11种过渡金属氧氟化物NLO晶体光学性质
Table 1 Optical properties of 11 transition metal oxyfluoride NLO crystals discussed in this article
| 化合物 | 空间群 | 配位多面体 | 倍频效应(×KDP) | 吸收截止边/nm | 光学带隙/eV | 双折射率 | 最短相位匹配波长/nm | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| ZrOF4H2 | I42d | [ZrO2F6] | 2.2 | <190 | >6.53 | 0.035@546 | 380 | [ |
| HfOF4H2 | I42d | [HfO2F6] | 1.8 | <190 | >6.53 | 0.026@546 | 400 | [ |
| ZrF2(SO4) | Pca21 | [ZrO4F4] | 3.2 | 206 | 6.02 | 0.074@546 | 340 | [ |
| HfF2(SO4) | Pca21 | [HfO4F4] | 2.5 | <190 | >6.53 | 0.058@546 | N.A. | [ |
| K3Ba2Zr6F31 | P63mc | [ZrF8] | 0.5 | <200 | >6.20 | 0.08@1064 | N.A. | [ |
| KBa3Zr2F14Cl | P4m2 | [ZrF7] | 1.0 | 194 | >6.20 | 0.11@550 | N.A. | [ |
| KBa3Hf2F14Cl | P4m2 | [HfF7] | 0.9 | 192.8 | >6.20 | 0.09@550 | N.A. | [ |
| Ba3Nb2O2F12(H2O)2 | Cmc21 | [NbOF6] | 0.9 | 290 | 4.88 | 0.19@546 | N.A. | [ |
| Ba0.5NbO2F2(H2O) | P62m | [NbO4F2] | 1.7 | 290 | 3.66 | 0.27@546 | N.A. | [ |
| K5Ta3OF18 | I4cm | [TaO2F4] | 2.8 | ~200 | 6.20 | 0.092@546 | N.A. | [ |
| Rb5Ta3OF18 | I4cm | [TaO2F4] | 2.6 | ~200 | 6.20 | 0.085@546 | N.A. | [ |
图1 HfOF4H2化合物的晶体结构[21]。(a)Hf原子的配位环境;(b)HfOF4H2中六元环通道的视图;KTiOPO4(c)和HfOF4H2(d)沿b轴的结构对比,KTiOPO4和HfOF4H2的紫外吸收边分别位于近紫外区域(350 nm)和深紫外区域(<190 nm)
Fig.1 Crystal structure of HfOF4H2 compound[21]. (a) Coordination environment of the Hf atoms in HfOF4H2; (b) view of the 6-MR channels in HfOF4H2 with 8-MR [Hf8] and 3-MR [Hf3] windows along the c-axis; structural comparison of KTiOPO4 (c) and HfOF4H2 (d) along the b-axis, UV absorption edges of KTiOPO4 and HfOF4H2 are located in the near UV region (350 nm) and deep-UV region (<190 nm), respectively
图2 ZrF2(SO4)和ZrF2(SO4)化合物的晶体结构[22]。(a)ZrF2(SO4)和ZrF2(SO4)在bc平面上的结构视图;(b)二维[MO4F4]∞层在ac平面上的结构视图;(c)ZrF2(SO4)和ZrF2(SO4)在ac平面上的结构视图,黑色箭头表示[SO4]基团的排列方向;(d)d0过渡金属的电负性;(e)Hf(OH)2(SO4)在ab平面上的结构视图,黑色箭头表示相邻[SO4]基团反向排列;(f)5d0过渡金属阳离子Hf4+提高了导带底部,而F-阴离子降低了价带顶部,从而扩大了带隙
Fig.2 Crystal structure of ZrF2(SO4) and ZrF2(SO4) compounds[22]. (a) Structure of ZrF2(SO4) and ZrF2(SO4) viewed in the bc plane; (b) view of the 2D [MO4F4]∞ layer in the ac plane; (c) ZrF2(SO4) and ZrF2(SO4) viewed in the ac plane, the black arrows indicate the orientation of the [SO4] groups, which are roughly along the c-axis; (d) electronegativity of the d0 transition metals; (e) structure of Hf(OH)2(SO4) viewed in the ab plane, the black arrows indicate the antiparallel alignment of adjacent [SO4] groups, which therefore cancel each other out; (f) 5d0-TM Hf4+ cations and F- anions raise the CBM and decrease the VBM, respectively, and consequently enlarge the bandgap
图3 K3Ba2Zr6F31化合物的晶体结构[23]。(a)、(b)在ac和ab平面排列的顺式[Zr6F34]10-簇;(c)沿c轴延伸的[Zr6F31]∞链;(d)在ab平面上[Zr6F31]∞阴离子链的排列方式和K3Ba2Zr6F31的整体结构视图
Fig.3 Crystal structure of K3Ba2Zr6F31 compound[23]. (a), (b) Cis-[Zr6F34] cluster at the ac and ab plane; (c) the [Zr6F31]∞ chain along the c-axis; (d) the aligned arrangement of the [Zr6F31]∞ anionic chains and whole structure of K3Ba2Zr6F31 in the ab plane
图4 KBa3Zr2F14Cl化合物的晶体结构[24]。(a)孤立的[ZrF7]单帽三角锥形棱柱体;(b)K+和Ba2+的配位环境;(c)KBa3Zr2F14Cl的结构
Fig.4 Crystal structure of KBa3Zr2F14Cl compound[24]. (a) Isolated [ZrF7] monocapped triangular prisms; (b) coordination modes of K+ and Ba2+ cations; (c) structure of KBa3Zr2F14Cl
图5 Ba0.5NbO2F2(H2O)化合物的晶体结构[25]。(a)、(b)由三个相邻的[NbO4F2]八面体组成的[Nb3O6F6]三聚体;(c)ab平面上[Nb3O6F6]∞链的排布方式;(d)沿c轴的整体结构框架视图
Fig.5 Crystal structure of Ba0.5NbO2F2(H2O) compound[25]. (a), (b) [Nb3O6F6] trimer formed by three neighboring [NbO4F2] octahedra; (c) isolated [Nb3O6F6]∞ chains running parallelly along the ab plane; (d) the whole framework of Ba0.5NbO2F2(H2O) along the c-axis
图6 K5Ta3OF18和Rb5Ta3OF18的晶体结构[26]。(a)[TaOF4]∞一维链及其组成,粉色箭头表示一维[TaOF4]∞链的净偶极矩方向;(b)[TaO2F4]和[TaF7]多面体在bc平面的排布方式;(c)K5Ta3OF18沿c轴的全局视图;(d)[TaOF4]∞链与碱金属阳离子之间的静电相互作用示意图;(e)K5Ta3OF18和Rb5Ta3OF18的平均角度方差
Fig.6 Crystal structure of K5Ta3OF18 and Rb5Ta3OF18[26]. (a) 1D [TaOF4]∞ chain and its components, pink arrow in the panel represents the net dipole moment of the 1D [TaOF4]∞ chain; (b) spatial distribution of [TaO2F4] and [TaF7] polyhedra in bc plane; (c) global view of K5Ta3OF18 along the c-axis; (d) scheme of electrostatic interaction between [TaOF4]∞ chain and alkali metal cation; (e) average angle variance and bond length quadratic elongation in K5Ta3OF18和Rb5Ta3OF18
| [1] |
EATON D F. Nonlinear optical materials[J]. Science, 1991, 253(5017): 281-287.
PMID |
| [2] | 张克从, 王希敏. 非线性光学晶体材料科学[M]. 北京: 科学出版社, 1996. |
| ZHANG K C, WANG X M. Nonlinear optical crystal materials science[M]. Beijing: Science Press, 1996 (in Chinese). | |
| [3] | NIKOGOSYAN D N. Nonlinear optical crystals: a complete survey[M]. Springer Science & Business Media, 2006. |
| [4] |
ZOU G H, OK K M. Novel ultraviolet (UV) nonlinear optical (NLO) materials discovered by chemical substitution-oriented design[J]. Chemical Science, 2020, 11(21): 5404-5409.
DOI URL |
| [5] |
MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chemical Reviews, 2021, 121(3): 1130-1202.
DOI URL |
| [6] | YANG C, GOU J, ZHU Y L, et al. Unconventional heterobidentate coordination of 4-hydroxypyridine leading to remarkably strong second-harmonic generation in Zn(C5H4NO)2 [J]. Angewandte Chemie, 2025, 64(9): e202420810. |
| [7] | ZHU Y L, GOU J, YANG C, et al. Decoupling the SHG-birefringence trade-off in UV NLO materials via triple-control coordination engineering: achieving synergistic performance optimization[J]. Angewandte Chemie, 2025, 64(31): e202509290. |
| [8] |
CHEN X, LI Y Q, LUO J H, et al. Recent advances in non-π-conjugated nonlinear optical sulfates with deep-UV absorption edge[J]. Chinese Journal of Structural Chemistry, 2023, 42(3): 100044.
DOI URL |
| [9] |
MORI Y, KURODA I, NAKAJIMA S, et al. New nonlinear optical crystal: cesium lithium borate[J]. Applied Physics Letters, 1995, 67(13): 1818-1820.
DOI URL |
| [10] |
CHEN C T, WU Y C, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5 [J]. Journal of the Optical Society of America B, 1989, 6(4): 616.
DOI URL |
| [11] | CHEN C, WU B, JIANG A, et al. A new type ultraviolet SHG crystal β-BaB2O4 [J]. Science in China. Series B, Chemistry, 1985, 28: 235-243. |
| [12] | 陈创天, 刘丽娟, 王晓洋. 深紫外非线性光学晶体KBe2BO3F2的研究进展[J]. 物理, 2014, 43(8): 520-527. |
| CHEN C T, LIU L J, WANG X Y. Progress review of the deep-UV nonlinear optical crystal: KBe2BO3F2 [J]. Physics, 2014, 43(8): 520-527 (in Chinese). | |
| [13] |
CHEN C T, WANG Y B, WU B C, et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7 [J]. Nature, 1995, 373(6512): 322-324.
DOI |
| [14] |
CHEN J, HU C L, KONG F, et al. High-performance second-harmonic-generation (SHG) materials: new developments and new strategies[J]. Accounts of Chemical Research, 2021, 54(12): 2775-2783.
DOI URL |
| [15] |
ZOU G H, YE N, HUANG L, et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A=K, Rb, Cs; B=Ca, Sr, Ba) as nonlinear optical materials[J]. Journal of the American Chemical Society, 2011, 133(49): 20001-20007.
DOI URL |
| [16] |
PENG G, LIN C S, YE N. NaZnCO3(OH): a high-performance carbonate ultraviolet nonlinear optical crystal derived from KBe2BO3F2 [J]. Journal of the American Chemical Society, 2020, 142(49): 20542-20546.
DOI URL |
| [17] |
YU P, WU L M, ZHOU L J, et al. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br)[J]. Journal of the American Chemical Society, 2014, 136(1): 480-487.
DOI URL |
| [18] |
SHEN Y G, YANG Y, ZHAO S G, et al. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation[J]. Chemistry of Materials, 2016, 28(19): 7110-7116.
DOI URL |
| [19] |
ZHAO S G, GONG P F, LUO S Y, et al. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3- units[J]. Journal of the American Chemical Society, 2014, 136(24): 8560-8563.
DOI URL |
| [20] |
LI Y Q, LIANG F, ZHAO S G, et al. Two non-π-conjugated deep-UV nonlinear optical sulfates[J]. Journal of the American Chemical Society, 2019, 141(9): 3833-3837.
DOI PMID |
| [21] |
JIANG C B, JIANG X X, WU C, et al. Isoreticular design of KTiOPO4-like deep-ultraviolet transparent materials exhibiting strong second-harmonic generation[J]. Journal of the American Chemical Society, 2022, 144(44): 20394-20399.
DOI URL |
| [22] |
WU C, JIANG C B, WEI G F, et al. Toward large second-harmonic generation and deep-UV transparency in strongly electropositive transition metal sulfates[J]. Journal of the American Chemical Society, 2023, 145(5): 3040-3046.
DOI URL |
| [23] |
YAN M, TANG R L, YAO W D, et al. Exploring a new short-wavelength nonlinear optical fluoride material featuring unprecedented polar cis-[Zr6F34]10- clusters[J]. Chemical Science, 2024, 15(8): 2883-2888.
DOI URL |
| [24] |
YAN M, HU C L, TANG R L, et al. KBa3M2F14Cl (M=Zr, Hf): novel short-wavelength mixed metal halides with the largest second-harmonic generation responses contributed by mixed functional moieties[J]. Chemical Science, 2024, 15(22): 8500-8505.
DOI URL |
| [25] |
YAN M, TANG R L, LIU W L, et al. From Ba3Nb2O2F12(H2O)2 to Ba0.5NbO2F2(H2O): achieving balanced nonlinear optical performance by O/F ratio regulation[J]. Inorganic Chemistry, 2022, 61(50): 20709-20715.
DOI URL |
| [26] | HU Y L, WU C, JIANG X X, et al. Ultrashort phase-matching wavelength and strong second-harmonic generation in deep-UV-transparent oxyfluorides by covalency reduction[J]. Angewandte Chemie, 2023, 62(52): e202315133. |
| [27] |
OK K M, HALASYAMANI P S, CASANOVA D, et al. Distortions in octahedrally coordinated d0 transition metal oxides: a continuous symmetry measures approach[J]. Chemistry of Materials, 2006, 18(14): 3176-3183.
DOI URL |
| [1] | 韩懿博, 吉旭, 井群, 朱宣恺, 艾孜再姆·吾布力塔依尔, 赵文豪, 曹鑫佳. YPO4双折射率增益机制和晶格工程调控策略研究[J]. 人工晶体学报, 2025, 54(9): 1547-1557. |
| [2] | 崔健, 和志豪, 丁家福, 王云杰, 万俯宏, 李佳郡, 苏欣. 含d10电子构型钨酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2025, 54(5): 841-849. |
| [3] | 王晓洋, 刘丽娟. 深紫外KBBF薄片晶体的连续波激光倍频器设计[J]. 人工晶体学报, 2025, 54(10): 1732-1739. |
| [4] | 郭小天, 梁飞, 于浩海, 张怀金. 基于三阶非线性光学效应实现直接三倍频研究进展[J]. 人工晶体学报, 2025, 54(10): 1671-1686. |
| [5] | 陈鑫晨, 车王飞, 吴雅博, 李广卯, 崔晨, 杨志华, 潘世烈. Rb2CdSi3Se8和K2HgSi3S8晶体的合成及其光学性能研究[J]. 人工晶体学报, 2025, 54(10): 1722-1731. |
| [6] | 黄溢声, 刘乐辉, 张莉珍, 林州斌, 罗兴木, 陈伟. 三方对称高温相偏硼酸钡晶体的生长和性能研究[J]. 人工晶体学报, 2025, 54(10): 1844-1848. |
| [7] | 李俊哲, 刘彬文, 郭国聪. PbMg6Ga6S16晶体的合成与非线性光学性能的研究[J]. 人工晶体学报, 2025, 54(10): 1787-1795. |
| [8] | 王云杰, 和志豪, 丁家福, 苏欣. X2(PO4)2(X=Ba、Pb)和XPO4(X=Y、Bi)中阳离子对结构框架影响及双折射率来源研究[J]. 人工晶体学报, 2025, 54(1): 85-94. |
| [9] | 伍秋林, 冯新凯, 陈怀熹, 陈家颖, 马翠坪, 梁万国. 基于紧凑型Nd∶YAG/PPMgLN模组的561 nm基模激光器[J]. 人工晶体学报, 2024, 53(9): 1512-1518. |
| [10] | 焦思慧, 吴红萍, 俞洪伟. CsBa2ScB8O16:首例结构中同时含有零维[B3O6]基元和一维B—O链的稀土硼酸盐[J]. 人工晶体学报, 2024, 53(9): 1550-1559. |
| [11] | 钟琼丽, 王绪, 马奎, 杨发顺. Al掺杂对β-Ga2O3薄膜光学性质的影响研究[J]. 人工晶体学报, 2024, 53(8): 1352-1360. |
| [12] | 张博, 王云杰, 齐亚杰, 丁家福, 和志豪, 苏欣. 碱金属钼酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2024, 53(6): 999-1007. |
| [13] | 刘青雄, 王天予, 刘孚安, 吴倩, 尹延如, 赫崇君, 高泽亮, 夏明军. 非线性光学晶体K3B6O10Br的生长与光电性能研究[J]. 人工晶体学报, 2023, 52(7): 1296-1301. |
| [14] | 王卿, 武书凡, 陆枳岑, 钱露, 潘尚可, 潘建国. 1英寸CsPbCl3晶体的生长及其发光性能研究[J]. 人工晶体学报, 2023, 52(4): 578-583. |
| [15] | 尹子龙, 冯光文, 陈恒雷. 不同合成方法对LiMgPO4∶Dy发光性能的影响[J]. 人工晶体学报, 2023, 52(2): 315-321. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS