| [1] |
ZHAO Y M, SUN Y R, HE Y, et al. Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter[J]. Scientific Reports, 2016, 6: 38044.
DOI
PMID
|
| [2] |
KIM Y, SHIN H B, LEE W H, et al. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109984.
|
| [3] |
FAFARD S, YORK M C A, PROULX F, et al. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures[J]. Applied Physics Letters, 2016, 108(7): 071101.
|
| [4] |
HOWELL J T, O'NEILL M J, FORK R L. NASA marshall space flight center, flight projects directorate[C]. FD 02, Huntsville, Alabama, 35812 USA.
|
| [5] |
BLACKWELL B D, HARRIS J H, HOWARD J, et al. Overview and results from the h-1 national facility[C]// AIP Conference Proceedings. American Institute of Physics, 2003, 669(1): 158-161.
|
| [6] |
SANG L W, SUMIYA M, LIAO M Y, et al. Polarization-induced hole doping for long-wavelength in-rich InGaN solar cells[J]. Applied Physics Letters, 2021, 119(20): 202103.
|
| [7] |
HUANG X Q, FU H Q, CHEN H, et al. Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress[J]. Applied Physics Letters, 2017, 111(23): 233511.
|
| [8] |
NICOLETTO M, CARIA A, DE SANTI C, et al. Optically induced degradation due to thermally activated diffusion in GaN-based InGaN/GaN MQW solar cells[J]. IEEE Transactions on Electron Devices, 2023, 70(3): 1115-1120.
|
| [9] |
KHVOSTIKOV V, KALYUZHNYY N, MINTAIROV S, et al. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation[C]//3rd International Conference on Theoretical and Applied Physics 2013 (ICTAP 2013), Malang, East Java, Indonesia. AIP Publishing LLC, 2014: 21-24.
|
| [10] |
JIANG Y, LI Y F, LI Y Q, et al. Realization of high-luminous-efficiency InGaN light-emitting diodes in the “green gap” range[J]. Scientific Reports, 2015, 5: 10883.
|
| [11] |
HUANG X Q, CHEN H, FU H Q, et al. Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers[J]. Applied Physics Letters, 2018, 113(4): 043501.
|
| [12] |
DONG H L, JIA T T, LIANG J, et al. Improved carrier transport and photoelectric properties of InGaN/GaN multiple quantum wells with wider well and narrower barrier[J]. Optics & Laser Technology, 2020, 129: 106309.
|
| [13] |
USMAN M, MUNSIF M, ANWAR A R, et al. Quantum efficiency enhancement by employing specially designed AlGaN electron blocking layer[J]. Superlattices and Microstructures, 2020, 139: 106417.
|
| [14] |
USMAN M, MUNSIF M, ANWAR A R, et al. Hole transport enhancement by thickness- and composition-grading of electron blocking layer[J]. Optical Engineering, 2021, 60(3): 036101-036101.
|
| [15] |
ASHBY C I H, MITCHELL C C, HAN J, et al. Low-dislocation-density GaN from a single growth on a textured substrate[J]. Applied Physics Letters, 2000, 77(20): 3233-3235.
|
| [16] |
SAITO S, HASHIMOTO R, HWANG J, et al. InGaN light-emitting diodes on c-face sapphire substrates in green gap spectral range[J]. Applied Physics Express, 2013, 6(11): 111004.
|
| [17] |
SHEN X Q, MATSUHATA H, OKUMURA H. Reduction of the threading dislocation density in GaN films grown on vicinal sapphire (0001) substrates[J]. Applied Physics Letters, 2005, 86(2): 021912.
|
| [18] |
HU Y L, KRÄMER S, FINI P T, et al. Atomic structure of prismatic stacking faults in nonpolar a-plane GaN epitaxial layers[J]. Applied Physics Letters, 2012, 101(11): 112102.
|
| [19] |
ISHIKAWA H, ZHAO G Y, NAKADA N, et al. GaN on Si substrate with AlGaN/AlN intermediate layer[J]. Japanese Journal of Applied Physics, 1999, 38(5A): L492-L494.
|
| [20] |
DADGAR A, BLÄSING J, DIEZ A, et al. Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness[J]. Japanese Journal of Applied Physics, 2000, 39(11B): L1183.
|
| [21] |
WANG C H, CHANG S P, KU P H, et al. Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers[J]. Applied Physics Letters, 2011, 99(17): 171106.
|
| [22] |
TZOU A J, LIN D W, YU C R, et al. High-performance InGaN-based green light-emitting diodes with quaternary InAlGaN/GaN superlattice electron blocking layer[J]. Optics Express, 2016, 24(11): 11387-11395.
|
| [23] |
HUANG Y, GUO Z Y, ZHANG M, et al. Improved performance of GaN-based ultraviolet LEDs with electron blocking layers composed of double-peak p-type Al x Ga1- x N/GaN superlattice layers[J]. IEEE Access, 2021, 9: 65246-65253.
|
| [24] |
LIN B C, CHEN K J, WANG C H, et al. Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer[J]. Optics Express, 2014, 22(1): 463-469.
|
| [25] |
RUTERANA P, MORALES M, CHERY N, et al. Effect of AlGaN interlayer on the GaN/InGaN/GaN/AlGaN multi-quantum wells structural properties toward red light emission[J]. Journal of Applied Physics, 2020, 128(22): 223102.
|
| [26] |
KRAMES M R, SHCHEKIN O B, MUELLER-MACH R, et al. Status and future of high-power light-emitting diodes for solid-state lighting[J]. Journal of Display Technology, 2007, 3(2): 160-175.
|
| [27] |
USMAN M, ANWAR A R, SABA K, et al. Analysis of various electron blocking layers to improve efficiency in green light-emitting diodes[J]. Ceramics International, 2020, 46(11): 18464-18468.
|
| [28] |
ZHANG N, LIU Z, WEI T B, et al. Effect of the graded electron blocking layer on the emission properties of GaN-based green light-emitting diodes[J]. Applied Physics Letters, 2012, 100(5): 053504.
|
| [29] |
FASOL G, NAKAMURA S. The blue laser diode[M]. Berlin: Springer, 1997.
|
| [30] |
SCHUBERT M F, XU J R, KIM J K, et al. Polarization-matched GaInN∕AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop[J]. Applied Physics Letters, 2008, 93(4): 041102.
|
| [31] |
DAVID A, GRUNDMANN M J, KAEDING J F, et al. Carrier distribution in (0001) InGaN∕GaN multiple quantum well light-emitting diodes[J]. Applied Physics Letters, 2008, 92(5): 053502.
|
| [32] |
KUO Y K, SHIH Y H, TSAI M C, et al. Improvement in electron overflow of near-ultraviolet InGaN LEDs by specific design on last barrier[J]. IEEE Photonics Technology Letters, 2011, 23(21): 1630-1632.
|
| [33] |
KHAYET M. Characterization of membrane distillation membranes by tapping mode atomic force microscopy[M]// Recent Advances in Multidisciplinary Applied Physics. Elsevier Science Ltd, 2005: 141-148.
|
| [34] |
TOBALDI D M, LAJAUNIE L, CRETÌ A, et al. AlN interlayer-induced reduction of dislocation density in the AlGaN epilayer[J]. CrystEngComm, 2024, 26(26): 3475-3482.
|
| [35] |
LIU X, LV Z X, LIAO Z F, et al. Highly efficient AlGaN-based deep-ultraviolet light-emitting diodes: from bandgap engineering to device craft[J]. Microsystems & Nanoengineering, 2024, 10: 110.
|
| [36] |
GUO J X, DING J, MO C L, et al. Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate[J]. Chinese Physics B, 2020, 29(4): 047303.
|
| [37] |
SRIKANT V, SPECK J S, CLARKE D R. Mosaic structure in epitaxial thin films having large lattice mismatch[J]. Journal of Applied Physics, 1997, 82(9): 4286-4295.
|
| [38] |
XU S R, LI P X, ZHANG J C, et al. Threading dislocation annihilation in the GaN layer on cone patterned sapphire substrate[J]. Journal of Alloys and Compounds, 2014, 614: 360-363.
|
| [39] |
YANG J, ZHAO D G, JIANG D S, et al. Photovoltaic response of InGaN/GaN multi-quantum well solar cells enhanced by inserting thin GaN cap layers[J]. Journal of Alloys and Compounds, 2015, 635: 82-86.
|
| [40] |
HOU Y F, LIANG F, ZHAO D G, et al. Role of hydrogen treatment during the material growth in improving the photoluminescence properties of InGaN/GaN multiple quantum wells[J]. Journal of Alloys and Compounds, 2021, 874: 159851.
|
| [41] |
QI Y D, LIANG H, WANG D, et al. Comparison of blue and green InGaN∕GaN multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2005, 86(10): 101903.
|
| [42] |
LIU W, ZHAO D G, JIANG D S, et al. Shockley-Read-Hall recombination and efficiency droop in InGaN/GaN multiple-quantum-well green light-emitting diodes[J]. Journal of Physics D: Applied Physics, 2016, 49(14): 145104.
|
| [43] |
SZE S M, LI Y, NG K K. Physics of semiconductor devices[M]. Hoboken: John Wiley & Sons, 2021.
|
| [44] |
SHAN H S, MEI Y J, WANG N. Degradation in efficiency of InGaN/GaN multiquantum well solar cells with rising temperature[J]. IEEE Transactions on Electron Devices, 2022, 69(11): 6195-6200.
|
| [45] |
PEARTON S J, HAQUE A M, KHACHATRIAN A, et al. Review: opportunities in single event effects in radiation-exposed SiC and GaN power electronics[J]. ECS Journal of Solid State Science and Technology, 2021, 10(7): 075004.
|