| [1] |
贺小敏, 唐佩正, 刘若琪, 等. AlN/β-Ga2O3HEMT频率特性仿真研究[J]. 人工晶体学报, 2024, 53(8): 1361-1368.
|
|
HE X M, TANG P Z, LIU R Q, et al. Simulation study on frequency characteristics of AlN/β-Ga2O3 HEMT[J]. Journal of Synthetic Crystals, 2024, 53(8): 1361-1368 (in Chinese).
|
| [2] |
DONG Y B, WANG Y, TIAN X S, et al. First-principles study of Mg-Ge co-doping to realize p-type β-Ga2O3 containing divacancy-interstitial complex defects[J]. Computational Materials Science, 2025, 253: 113849.
|
| [3] |
钟琼丽, 王 绪, 马 奎, 等. Al掺杂对β-Ga2O3薄膜光学性质的影响研究[J]. 人工晶体学报, 2024, 53(8): 1352-1360.
|
|
ZHONG Q L, WANG X, MA K, et al. Effect of Al doping on the optical properties of β-Ga2O3 thin films[J]. Journal of Synthetic Crystals, 2024, 53(8): 1352-1360 (in Chinese).
|
| [4] |
VARLEY J B, WEBER J R, JANOTTI A, et al. Oxygen vacancies and donor impurities in β-Ga2O3[J]. Applied Physics Letters, 2010, 97(14): 142106.
|
| [5] |
VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping[J]. Applied Physics Letters, 2008, 92(20): 202120.
|
| [6] |
CAI X F, SABINO F P, JANOTTI A, et al. Approach to achieving a p-type transparent conducting oxide: doping of bismuth-alloyed Ga2O3 with a strongly correlated band edge state[J]. Physical Review B, 2021, 103(11): 115205.
|
| [7] |
YAMAMOTO T, KATAYAMA-YOSHIDA H. Physics and control of valence states in ZnO by codoping method[J]. Physica B: Condensed Matter, 2001, 302: 155-162.
|
| [8] |
SUI Y R, YAO B, YANG J H, et al. Deposition and properties of B-N codoped p-type ZnO thin films by RF magnetron sputtering[J]. Applied Surface Science, 2010, 256(9): 2726-2730.
|
| [9] |
SENTHIL KUMAR E, CHATTERJEE J, RAMA N, et al. A codoping route to realize low resistive and stable p-type conduction in (Li, Ni): ZnO thin films grown by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 2011, 3(6): 1974-1979.
|
| [10] |
ZHANG C Z, FU X Q, WANG H G. Doping strategies for β-Ga2O3 based on high-throughput first-principles calculations[J]. Materials Today Communications, 2024, 40: 109994.
|
| [11] |
ZHAI H C, LIU C X, WU Z Y, et al. Full β-Ga2O3 films-based p-n homojunction[J]. Science China Materials, 2024, 67(3): 898-905.
|
| [12] |
MA C C, WU Z Y, ZHANG H, et al. P-type nitrogen-doped β-Ga2O3: the role of stable shallow acceptor NO-VGa complexes[J]. Physical Chemistry Chemical Physics, 2023, 25(19): 13766-13771.
|
| [13] |
HORNG R H, TSAI X Y, TARNTAIR F G, et al. P-type conductive Ga2O3 epilayers grown on sapphire substrate by phosphorus-ion implantation technology[J]. Materials Today Advances, 2023, 20: 100436.
|
| [14] |
SU Y L, GUO D Y, YE J H, et al. Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity[J]. Journal of Alloys and Compounds, 2019, 782: 299-303.
|
| [15] |
SINGH A K, YEN C C, CHANG K P, et al. Structural and photoluminescence properties of Co-sputtered p-type Zn-doped β-Ga2O3 thin films on sapphire substrates[J]. Journal of Luminescence, 2023, 260: 119836.
|
| [16] |
GAO S S, LI W X, DAI J F, et al. Effect of transition metals doping on electronic structure and optical properties of β-Ga2O3[J]. Materials Research Express, 2021, 8(2): 025904.
|
| [17] |
SAHA S, MENG L Y, BHUIYAN A F M A U, et al. Electrical characteristics of in situ Mg-doped β-Ga2O3 current-blocking layer for vertical devices[J]. Applied Physics Letters, 2023, 123(13): 132105.
|
| [18] |
WU Z Y, JIANG Z X, MA C C, et al. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films[J]. Materials Today Physics, 2021, 17: 100356.
|
| [19] |
GAO Y, DONG H T, ZHANG X K, et al. Effects of substrate bias voltage on structural and optical properties of co-sputtered (Al x Ga1– x)2O3 films[J]. Journal of Electronic Materials, 2023, 52(11): 7429-7437.
|
| [20] |
GUO W Y, GUO Y T, DONG H, et al. Tailoring the electronic structure of β-Ga2O3 by non-metal doping from hybrid density functional theory calculations[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5817-5825.
|
| [21] |
MA J N, LIN J Y, LIU J Y, et al. Achieving high conductivity p-type Ga2O3 through Al-N and In-N co-doping[J]. Chemical Physics Letters, 2020, 746: 137308.
|
| [22] |
YANG J C, FARES C, REN F, et al. Effects of fluorine incorporation into β-Ga2O3[J]. Journal of Applied Physics, 2018, 123(16): 165706.
|
| [23] |
YAN C Y, SU J, WANG Y F, et al. Reducing the acceptor levels of p-type β-Ga2O3 by (metal, N) co-doping approach[J]. Journal of Alloys and Compounds, 2021, 854: 157247.
|
| [24] |
GELLER S. Crystal structure of β-Ga2O3[J]. The Journal of Chemical Physics, 1960, 33(3): 676-684.
|
| [25] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
|
| [26] |
BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
DOI
PMID
|
| [27] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775.
|
| [28] |
TANG C, SUN J, LIN N, et al. Electronic structure and optical property of metal-doped Ga2O3: a first principles study[J]. RSC Advances, 2016, 6(82): 78322-78334.
|
| [29] |
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2009.
|
|
HU G X, CAI X, RONG Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2009 (in Chinese).
|
| [30] |
ZHU J X, PAN Y, WEN M, et al. Enhancing the electronic and optical properties of β-Ga2O3: effects of B-, N-, and B-N doping[J]. Journal of Alloys and Compounds, 2025, 1011: 178426.
|
| [31] |
LI L, LIAO F, HU X T. The possibility of N-P codoping to realize P type β-Ga2O3[J]. Superlattices and Microstructures, 2020, 141: 106502.
|
| [32] |
邹梦真, 肖清泉, 姚云美, 等. Lu-Eu共掺杂Ga2O3的光电性质的第一性原理计算[J]. 原子与分子物理学报, 2024, 41(3): 150-157.
|
|
ZOU M Z, XIAO Q Q, YAO Y M, et al. First-principles study on the photoelectric properties of Lu-Eu Co-doped β-Ga2O3 [J]. Journal of Atomic and Molecular Physics, 2024, 41(3): 150-157 (in Chinese).
|
| [33] |
REN S S, FU X Q, ZHAO H, et al. First-principle study on photoelectric properties of Mg,N doped β-Ga2O3[J]. Journal of Synthetic Crystals, 2022, 51(1): 56-65.
|
| [34] |
JIN S Q, SUN S Y, LIU Z H, et al. Reduction of oxygen vacancies in Mg-N codoped Ga2O3 films for improving solar-blind UV photodetectors performance[J]. Materials Science in Semiconductor Processing, 2024, 177: 108361.
|