[1] 雷尚雪, 但红霞. 光动力治疗增效研究新进展[J]. 口腔医学研究, 2022, 38(6): 497-500. LEI S X, DAN H X. Progress of research aiming at improving the effect of photodynamic therapy[J]. Journal of Oral Science Research, 2022, 38(6): 497-500 (in Chinese). [2] 庞家胤, 和亚雄, 郑梦雪, 等. 光动力抗菌疗法对多重耐药铜绿假单胞菌体外杀伤作用的研究[J]. 第三军医大学学报, 2021, 43(7): 599-605. PNAG J Y, HE Y X, ZHENG M X, et al. Efficacy of antimicrobial photodynamic therapy for multidrug resistant Pseudomonas aeruginosa in vitro[J]. Journal of Third Military Medical University, 2021, 43(7): 599-605 (in Chinese). [3] 董建成. 纤维素基/卟啉光敏材料的制备及其抗菌性能[D]. 无锡: 江南大学, 2019. DONG J C. Preparation and antibacterial property of photoactive cellulose/porphyrin materials[D]. Wuxi: Jiangnan University, 2019 (in Chinese). [4] 孙艳梅. 单羟基咔咯及其金属配合物的光动力抗肿瘤活性研究[D]. 广州: 华南理工大学, 2020. SUN Y M. Study on the photodynamic anticancer activity of monohydroxyl corroles and their metal complexes[D]. Guangzhou: South China University of Technology, 2020 (in Chinese). [5] JIA Q Y, SONG Q, LI P, et al. Rejuvenated photodynamic therapy for bacterial infections[J]. Advanced Healthcare Materials, 2019, 8(14): 1900608. [6] 赵建喜, 尹秀娟, 方子源, 等. 光动力抗菌治疗骨髓炎的研究进展[J]. 河北大学学报(自然科学版), 2022, 42(2): 199-207. ZHAO J X, YIN X J, FANG Z Y, et al. Research progress of photodynamic therapy for osteomyelitis[J]. Journal of Hebei University (Natural Science Edition), 2022, 42(2): 199-207 (in Chinese). [7] 孙玉洁, 高敏政, 朱艺文, 等.光动力抗菌高分子材料研究进展[J]. 中国材料进展, 2022, 41(7):508-519+507. SUN Y J, GAO M Z, ZHU Y W, et al. Photodynamic antibacterial therapy based on polymer materials[J]. Materials China, 2022, 41(7): 508-519+507 (in Chinese). [8] 张 静, 赵 天, 丁亚楠, 等. 三羟基咔咯及其镓配合物(-Ga)在新型抗肿瘤药物研发中的应用及对人肺癌细胞(A549)增殖的影响[J]. 新疆医科大学学报, 2021, 44(3): 315-320. ZHANG J, ZHAO T, DING Y N, et al. Application of trihydroxycarbole and its gallium complex (-Ga) in development of new anti-tumor drugs and its effect on the proliferation of human lung cancer cells (A549)[J]. Journal of Xinjiang Medical University, 2021, 44(3): 315-320 (in Chinese). [9] 张 振, 温俊霞, 张生玉, 等. Push-Pull型不对称钴(Ⅲ)咔咯的合成与性质[J]. 合成化学, 2020, 28(9): 759-763. ZHANG Z, WEN J X, ZHANG S Y, et al. Synthesis and properties of asymmetric push-pull type Co(Ⅲ)PPh3 corroles[J]. Chinese Journal of Synthetic Chemistry, 2020, 28(9): 759-763(in Chinese). [10] 汪华华. 乙氧基羰基取代卟啉与咔咯金属配合物的研究[D]. 广州:华南理工大学,2017. WANG H H. Study on the metal complexes of ethoxycarbonyl substituted porphyrin and corrole[D]. Guangzhou: South China University of Technology, 2017(in Chinese). [11] 阳 红, 邹怀波, 汪华华, 等. 不同取代基铁咔咯配合物对苯乙烯的催化氧化[J]. 无机化学学报, 2015, 31(5): 968-974. YANG H, ZOU H B, WANG H H, et al. Catalytic styrene oxidation by iron corroles bearing different substituents[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(5): 968-974 (in Chinese). [12] LI X L, ZHANG X P, GUO M, et al. Identifying intermediates in electrocatalytic water oxidation with a manganese corrole complex[J]. Journal of the American Chemical Society, 2021, 143(36): 14613-14621. [13] 蒋 笑. 羟基咔咯磷配合物与DNA的相互作用及光动力抗肿瘤活性研究[D]. 广州: 华南理工大学, 2020. JIANG X. DNA binding and photodynamic antitumor activity of hydroxyl corrole phosphorus(Ⅴ) complex[D]. Guangzhou: South China University of Technology, 2020 (in Chinese). [14] 张 召, 余华军, 黄 慧, 等.咔咯光动力靶向降解SIRT1调节蛋白质乙酰化修饰抑制肝癌细胞生长的分子机制探究[C]//第十一届全国化学生物学学术会议论文摘要(第二卷). 广州, 2019: 256. ZHANG Z, YU H J, HUANG H, et al. Molecular mechanism of SIRT1-regulated protein acetylation modification inhibiting the growth of hepatoma cells by CAGUR photodynamic degradation[C]//Abstract of the 11th National Conference on Chemical Biology (Volume Ⅱ), Guangzhou, 2019: 256. [15] 冀晓宁. 咔咯及其衍生物的合成与性质研究[D]. 南京: 南京大学, 2013. JI X N. Synthesis, properties and applications of corroles[D]. Nanjing: Nanjing University, 2013 (in Chinese). [16] 李仕成, 方玉琦, 郭峻彤, 等. 溴乙基取代镓(Ⅲ)咔咯的合成及荧光性质研究[J]. 山东化工, 2020, 49(14):24-26+30. LI S C, FANG Y Q, GUO J T, et al. Synthesis and fluorescence property of bromoethylcorrole gallium (Ⅲ) complex[J]. Shandong Chemical Industry, 2020, 49(14): 24-26+30 (in Chinese). [17] ZHAO Y M, DAI W H, PENG Y L, et al. A corrole-based covalent organic framework featuring desymmetrized topology[J]. Angewandte Chemie International Edition, 2020, 59(11): 4354-4359. [18] EINREM R F, ALEMAYEHU A B, BORISOV S M, et al. Amphiphilic rhenium-oxo corroles as a new class of sensitizers for photodynamic therapy[J]. ACS Omega, 2020, 5(18): 10596-10601. [19] LIM P, MAHAMMED A, OKUN Z, et al. Differential cytostatic and cytotoxic action of metallocorroles against human cancer cells: potential platforms for anticancer drug development[J]. Chemical Research in Toxicology, 2012, 25(2): 400-409. [20] AGADJANIAN H, MA J, RENTSENDORJ A, et al. Tumor detection and elimination by a targeted gallium corrole[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15): 6105-6110. [21] TEO R D, GRAY H B, LIM P, et al. A cytotoxic and cytostatic gold(Ⅲ) corrole[J]. Chemical Communications, 2014, 50(89): 13789-13792. [22] ZHANG Z, YU H J, HUANG H, et al. The photocytotoxicity effect of cationic sulfonated corrole towards lung cancer cells: in vitro and in vivo study[J]. Lasers in Medical Science, 2019, 34(7): 1353-1363. [23] NA N, ZHAO D Q, LI H, et al. DNA binding, photonuclease activity and human serum albumin interaction of a water-soluble freebase carboxyl corrole[J]. Molecules, 2015, 21(1): E54. [24] 史 蕾,杨文聪,沈 淇,等.咔咯铁(Ⅲ)配合物与DNA的作用及其抗肿瘤活性[J]. 应用化学, 2019, 36(12): 1376-1386. SHI L, YANG W C, SHEN Q, et al. Iron corrole complexes: DNA-binding and anti-tumor activity[J]. Chinese Journal of Applied Chemistry, 2019, 36(12): 1376-1386 (in Chinese). [25] 孙艳梅, 刘海洋. 对羟基咔咯的细胞毒性研究[C]//全国第十九届大环化学暨第十一届超分子化学学术讨论会摘要论文集.呼伦贝尔,2018:403. SUN Y M, LIU H Y. Study on cytotoxicity of p-hydroxycarbrole[C]//Chinese Chemical Society, National Natural Science Foundation of China. Abstract Proceedings of the 19th National Symposium on Macrocyclic Chemistry and the 11th Supramolecular Chemistry, Hulun Buir, 2018: 403. [26] CARDOTE T A F, BARATA J F B, AMADOR C, et al. Evaluation of meso-substituted cationic corroles as potential antibacterial agents[J]. Anais Da Academia Brasileira De Ciencias, 2018, 90(1 Suppl 2): 1175-1185. [27] PREUß A, SALTSMAN I, MAHAMMED A, et al. Photodynamic inactivation of mold fungi spores by newly developed charged corroles[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 133: 39-46. [28] 秦银辉. 新型N-11,C-12,C-13和C-9位芳烷基克拉霉素半合成衍生物的设计、合成及生物活性评价[D]. 济南: 山东大学,2020. QIN Y H. Design, synthesis and bioactivity evaluation of novel N-11, C-12, C-13 and C-9 aralkyl clarithromycin semisynthetic derivatives[D]. Jinan: Shandong University, 2020 (in Chinese). [29] 潘吉脉, 胡安东, 杨 霞,等. 9味中药及其组方对鱼源弗氏柠檬酸杆菌体外抑菌试验的研究[J]. 扬州大学学报(农业与生命科学版), 2019, 40(4): 80-83. PAN J M, HU A D, YANG X, et al. Antibacterial test of 9 kinds of traditional Chinese medicines and the Prescriptions to Citrobacter freundii in vitro[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2019, 40(4): 80-83 (in Chinese). [30] AMOS-TAUTUA B M, SONGCA S P, OLUWAFEMI O S. Application of porphyrins in antibacterial photodynamic therapy[J]. Molecules (Basel, Switzerland), 2019, 24(13): 2456. [31] 史 蕾. Corrole单体及其吩噻嗪二元体的合成、光谱性质和光断裂DNA性质研究[D]. 广州: 华南理工大学,2010. SHI L. Synthesis, spectral properties and photocleavage DNA activities of corroles and phenothiazine-corrole dyads[D]. Guangzhou: South China University of Technology, 2010 (in Chinese). |