欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (2): 290-311.DOI: 10.16553/j.cnki.issn1000-985x.2024.0267

• 器件制备 • 上一篇    下一篇

超宽带隙氧化镓功率器件热管理的研究进展

谢银飞1, 何阳1, 刘伟业1, 徐文慧2, 游天桂2, 欧欣2, 郭怀新3, 孙华锐1   

  1. 1.哈尔滨工业大学(深圳),微纳光电信息系统理论与技术工业和信息化部重点实验室,深圳 518055;
    2.中国科学院上海微系统与信息技术研究所,集成电路材料全国重点实验室,上海 200050;
    3.南京电子器件研究所,微波毫米波单片集成和模块电路重点实验室,南京 211106
  • 收稿日期:2024-11-01 出版日期:2025-02-15 发布日期:2025-03-04
  • 通信作者: 孙华锐,博士,教授。E-mail:huarui.sun@hit.edu.cn;孙华锐,哈尔滨工业大学(深圳)教授、博士生导师,理学院副院长、物理学科主任。从事宽带隙半导体器件热可靠性、低维材料声子与光谱学等领域的研究,研究成果发表于Physical Review Letters、Nature Communications、Laser & Photonics Reviews、Small、Nano Research、Applied Physics Letters、IEEE Electron Device Letters、IEDM等国际期刊或会议,获广东省科技创新青年拔尖人才等奖励。
  • 作者简介:谢银飞(1997—),男,江西省人,博士研究生。E-mail:xieyinfei527@163.com
  • 基金资助:
    集成电路材料全国重点实验室开放课题(SKLIC-K2024-04);广东省科技创新青年拔尖人才项目(2021TQ06C953);深圳市基础研究面上项目(JCYJ20190806142614541)

Recent Progress on Thermal Management of Ultrawide Bandgap Gallium Oxide Power Devices

XIE Yinfei1, HE Yang1, LIU Weiye1, XU Wenhui2, YOU Tiangui2, OU Xin2, GUO Huaixin3, SUN Huarui1   

  1. 1. Ministry of Industry and Information Technology Key Laboratory of Micro-nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China;
    2. National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
    3. Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 211106, China
  • Received:2024-11-01 Online:2025-02-15 Published:2025-03-04

摘要: 氧化镓的低热导率是其功率器件发展的最大瓶颈,使其在高功率密度下产热时面临高效散热的巨大挑战。因此,开发全新的热管理和封装技术迫在眉睫。通过材料、器件和封装多层面的热管理来缓解自热引发的性能与可靠性问题成为关键。本文综述了超宽带隙(UWBG)氧化镓(β-Ga2O3)功率器件的热管理,针对相关挑战、潜在解决方案和研究机遇提出了观点。论文首先介绍了超宽带隙氧化镓的特性及其在电子器件领域的重要性,详细阐述了热管理在氧化镓器件中的关键意义。随后,从不同的热管理技术方面,包括衬底相关技术和结侧热管理技术等进行深入探讨,并分析了热管理对氧化镓器件电学性能的影响。最后,对氧化镓器件热管理的未来发展趋势进行展望,提出了“材料-器件-封装”电热协同设计、近结异质集成和新型外部封装等多维度的热管理策略,旨在唤起相关研究,加快超宽带隙氧化镓功率器件的开发和产业化进程。

关键词: 热管理, 超宽带隙, 氧化镓, 材料-器件-封装, 结侧散热, 高导热率衬底集成, 电热协同设计

Abstract: The low thermal conductivity of ultrawide bandgap (UWBG) gallium oxide (β-Ga2O3) is the most significant bottleneck restricting the development of its power devices, posing a huge challenge for efficient heat dissipation under high-power density conditions. Therefore, developing new thermal management and packaging technologies is extremely urgent. It is crucial to alleviate the performance and reliability issues caused by self-heating through thermal management at the material, device, and packaging levels. This paper provides a timely review of the state of the art in thermal management of UWBG β-Ga2O3 power devices, discussing related challenges, potential solutions, and research opportunities. The paper firstly introduces the characteristics of UWBG β-Ga2O3 and its significance in electronic devices, and elaborates on the crucial firstly importance of thermal management in β-Ga2O3 devices. Then, various thermal management techniques, including substrate-related methods and junction-side thermal management techniques, are thoroughly examined, and their impact on the electrical properties of β-Ga2O3 devices is analyzed. Finally, the future development trends of thermal management for UWBG β-Ga2O3 devices are prospected. Multi-dimensional thermal management strategies are proposed, focusing on “material-device-packaging” electrothermal collaborative design, near junction heterogeneous integration, and novel external packaging, aiming to arouse relevant research and accelerate the development and industrialization process of UWBG β-Ga2O3 power devices.

Key words: thermal management, ultrawide bandgap (UWBG), gallium oxide (β-Ga2O3), material-device-packaging, junction-side heat dissipation, integration of high thermal conductivity substrate, electrothermal co-design

中图分类号: