
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (5): 841-849.DOI: 10.16553/j.cnki.issn1000-985x.2024.0256
崔健1,2(
), 和志豪1,2, 丁家福1,2, 王云杰1,2, 万俯宏1,2, 李佳郡1,2, 苏欣1,2(
)
收稿日期:2024-10-27
出版日期:2025-05-15
发布日期:2025-05-28
通信作者:
苏欣,博士,副教授。E-mail:suxin_phy@sina.com作者简介:崔健(2001—),男,河北省人,硕士研究生。E-mail:798587442@qq.com
基金资助:
CUI Jian1,2(
), HE Zhihao1,2, DING Jiafu1,2, WANG Yunjie1,2, WAN Fuhong1,2, LI Jiajun1,2, SU Xin1,2(
)
Received:2024-10-27
Online:2025-05-15
Published:2025-05-28
摘要: 本文基于第一性原理方法对比研究了钨酸盐TMWO4(TM=Zn、Cd、Hg)的电子结构和光学性质。研究结果表明,ZnWO4、CdWO4和HgWO4三种钨酸盐的带隙均为直接带隙,带隙宽度分别为2.579、2.081和2.538 eV。三种钨酸盐价带顶部主要由O-2p态贡献,由于杂化效应,O-2p态和W-5d态共同组成导带底部。键布居数和电子局域函数表明,存在两种W—O键,W—O1长键为离子键,W—O2短键为共价键,金属阳离子(Zn、Cd、Hg)与O原子形成离子键。同种钨酸盐在不同方向上的介电函数都表现出差异,较大的Δε对双折射率Δn有积极的影响。随着d10电子构型金属阳离子的半径增大,钨酸盐的双折射率减小,在1 064 nm处ZnWO4、CdWO4和HgWO4的双折射率分别为0.192、0.187和0.078,其中ZnWO4和CdWO4的双折射率和各向异性在三种体系中较大。
中图分类号:
崔健, 和志豪, 丁家福, 王云杰, 万俯宏, 李佳郡, 苏欣. 含d10电子构型钨酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2025, 54(5): 841-849.
CUI Jian, HE Zhihao, DING Jiafu, WANG Yunjie, WAN Fuhong, LI Jiajun, SU Xin. First-Principles Study on the Relationship Between Structure and Properties of Tungstate with d10 Electron Configuration[J]. Journal of Synthetic Crystals, 2025, 54(5): 841-849.
| Compound | a/Å | b/Å | c/Å | β/(°) | b/c | Error/% | V/Å3 | |
|---|---|---|---|---|---|---|---|---|
| ZnWO4 | Before | 4.677 | 5.729 | 4.936 | 90.59 | 1.161 | 1.56 | 132.272 |
| After | 4.857 | 5.909 | 5.010 | 90.54 | 1.179 | 143.837 | ||
| CdWO4 | Before | 5.047 | 5.906 | 5.089 | 91.21 | 1.161 | 1.56 | 151.670 |
| After | 5.113 | 6.032 | 5.116 | 90.99 | 1.179 | 157.766 | ||
| HgWO4 | Before | 11.610 | 6.217 | 5.274 | 113.73 | 1.178 | 3.05 | 348.510 |
| After | 11.045 | 6.303 | 5.191 | 111.06 | 1.214 | 337.324 |
表1 TMWO4 (TM=Zn、 Cd、 Hg)在几何结构优化前、后的晶格参数
Table 1 Lattice parameters of TMWO4 (TM=Zn, Cd, Hg) before and after geometry optimization
| Compound | a/Å | b/Å | c/Å | β/(°) | b/c | Error/% | V/Å3 | |
|---|---|---|---|---|---|---|---|---|
| ZnWO4 | Before | 4.677 | 5.729 | 4.936 | 90.59 | 1.161 | 1.56 | 132.272 |
| After | 4.857 | 5.909 | 5.010 | 90.54 | 1.179 | 143.837 | ||
| CdWO4 | Before | 5.047 | 5.906 | 5.089 | 91.21 | 1.161 | 1.56 | 151.670 |
| After | 5.113 | 6.032 | 5.116 | 90.99 | 1.179 | 157.766 | ||
| HgWO4 | Before | 11.610 | 6.217 | 5.274 | 113.73 | 1.178 | 3.05 | 348.510 |
| After | 11.045 | 6.303 | 5.191 | 111.06 | 1.214 | 337.324 |
| Compound | Species | s | p | d | Total | Charge/e |
|---|---|---|---|---|---|---|
| ZnWO4 | Zn | 0.19 | 0.64 | 9.99 | 10.82 | 1.18 |
| W | 0.45 | 0.22 | 3.77 | 4.44 | 1.56 | |
| O | 1.86 | 4.86 | 0 | 6.72 | -0.72 | |
| CdWO4 | Cd | 0.15 | 0.54 | 9.99 | 10.68 | 1.32 |
| W | 0.44 | 0.26 | 3.78 | 4.48 | 1.52 | |
| O | 1.87 | 4.88 | 0 | 6.75 | -0.75 | |
| HgWO4 | Hg | 0.61 | 0.41 | 9.85 | 10.87 | 1.13 |
| W | 0.39 | 0.25 | 3.83 | 4.47 | 1.53 | |
| O | 1.86 | 4.92 | 0 | 6.78 | -0.78 |
表2 TMWO4(TM=Zn、Cd、Hg)的Mulliken电荷布居
Table 2 Mulliken charge population of TMWO4 (TM=Zn, Cd, Hg)
| Compound | Species | s | p | d | Total | Charge/e |
|---|---|---|---|---|---|---|
| ZnWO4 | Zn | 0.19 | 0.64 | 9.99 | 10.82 | 1.18 |
| W | 0.45 | 0.22 | 3.77 | 4.44 | 1.56 | |
| O | 1.86 | 4.86 | 0 | 6.72 | -0.72 | |
| CdWO4 | Cd | 0.15 | 0.54 | 9.99 | 10.68 | 1.32 |
| W | 0.44 | 0.26 | 3.78 | 4.48 | 1.52 | |
| O | 1.87 | 4.88 | 0 | 6.75 | -0.75 | |
| HgWO4 | Hg | 0.61 | 0.41 | 9.85 | 10.87 | 1.13 |
| W | 0.39 | 0.25 | 3.83 | 4.47 | 1.53 | |
| O | 1.86 | 4.92 | 0 | 6.78 | -0.78 |
| Compound | Bond | Population | Length/Å |
|---|---|---|---|
| ZnWO4 | W—O1 | 0.86 | 1.82 |
| W—O2 | 0.33 | 2.17 | |
| Zn—O1 | 0.28 | 2.12 | |
| Zn—O2 | 0.10 | 2.32 | |
| CdWO4 | W—O1 | 0.87 | 1.82 |
| W—O2 | 0.32 | 2.18 | |
| Cd—O1 | 0.23 | 2.25 | |
| Cd—O2 | 0.09 | 2.30 | |
| HgWO4 | W—O1 | 0.99 | 1.78 |
| W—O2 | 0.22 | 2.28 | |
| Hg—O1 | 0.41 | 1.98 | |
| Hg—O2 | 0.04 | 2.84 |
表3 TMWO4(TM=Zn、Cd、Hg)的Mulliken键重叠布居
Table 3 Mulliken key overlapping population of TMWO4 (TM=Zn, Cd, Hg)
| Compound | Bond | Population | Length/Å |
|---|---|---|---|
| ZnWO4 | W—O1 | 0.86 | 1.82 |
| W—O2 | 0.33 | 2.17 | |
| Zn—O1 | 0.28 | 2.12 | |
| Zn—O2 | 0.10 | 2.32 | |
| CdWO4 | W—O1 | 0.87 | 1.82 |
| W—O2 | 0.32 | 2.18 | |
| Cd—O1 | 0.23 | 2.25 | |
| Cd—O2 | 0.09 | 2.30 | |
| HgWO4 | W—O1 | 0.99 | 1.78 |
| W—O2 | 0.22 | 2.28 | |
| Hg—O1 | 0.41 | 1.98 | |
| Hg—O2 | 0.04 | 2.84 |
| 1 | PULLAR R C, FARRAH S, ALFORD N M. MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics[J]. Journal of the European Ceramic Society, 2007, 27(2/3): 1059-1063. |
| 2 | PANDEY P K, BHAVE N S, KHARAT R B. Spray deposition process of polycrystalline thin films of CuWO4 and study on its photovoltaic electrochemical properties[J]. Materials Letters, 2005, 59(24/25): 3149-3155. |
| 3 | ZHAO X, YAO W Q, WU Y, et al. Fabrication and photoelectrochemical properties of porous ZnWO4 film[J]. Journal of Solid State Chemistry, 2006, 179(8): 2562-2570. |
| 4 | HUANG G L, ZHU Y F. Synthesis and photocatalytic performance of ZnWO4 catalyst[J]. Materials Science and Engineering: B, 2007, 139(2/3): 201-208. |
| 5 | ZHANG C L, ZHANG H L, ZHANG K Y, et al. Photocatalytic activity of ZnWO₄: band structure, morphology and surface modification[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14423-14432. |
| 6 | ASLAM I, CAO C B, TANVEER M, et al. A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants[J]. RSC Advances, 2015, 5(8): 6019-6026. |
| 7 | DE MACEDO O B, DE OLIVEIRA A L M, DOS SANTOS I M G. Zinc tungstate: a review on its application as heterogeneous photocatalyst[J]. Cerâmica, 2022, 68(387): 294-315. |
| 8 | BRIK M G, NAGIRNYI V, KIRM M. Ab-initio studies of the electronic and optical properties of ZnWO4 and CdWO4 single crystals[J]. Materials Chemistry and Physics, 2012, 134(2/3): 1113-1120. |
| 9 | YU Y, WU S M, ZHU X R, et al. Crystal growth, structure, optical properties and laser performance of new tungstate Yb∶Na2La4(WO4)7 crystals[J]. Optical Materials, 2021, 111: 110653. |
| 10 | ZHARIKOV E V, ZALDO C, DÍAZ F. Double tungstate and molybdate crystals for laser and nonlinear optical applications[J]. MRS Bulletin, 2009, 34(4): 271-276. |
| 11 | BASIEV T T, SOBOL A A, VORONKO Y K, et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers[J]. Optical Materials, 2000, 15(3): 205-216. |
| 12 | NAGORNAYA L L, DANEVICH F A, DUBOVIK A M, et al. Tungstate and molybdate scintillators to search for dark matter and double beta decay[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2513-2518. |
| 13 | NAGORNAYA L L, DUBOVIK А M, GRINYOV В V, et al. Research and development of alkali earth tungstate and molybdate crystal scintillators for search for rare events[J]. Functional materials, 2009, 16(1): 55. |
| 14 | KOBAYASHI M, ISHII M, USUKI Y, et al. Cadmium tungstate scintillators with excellent radiation hardness and low background[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 349(2/3): 407-411. |
| 15 | THONGTEM S, WANNAPOP S, THONGTEM T. Characterization of CoWO4 nano-particles produced using the spray pyrolysis[J]. Ceramics International, 2009, 35(5): 2087-2091. |
| 16 | LACOMBA-PERALES R, RUIZ-FUERTES J, ERRANDONEA D, et al. Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius[J]. Europhysics Letters, 2008, 83(3): 37002. |
| 17 | KACZMAREK A M, VAN DEUN R. Rare earth tungstate and molybdate compounds:from 0D to 3D architectures[J]. Chemical Society Reviews, 2013, 42(23): 8835-8848. |
| 18 | SIRIWONG P, THONGTEM T, PHURUANGRAT A, et al. Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods[J]. CrystEngComm, 2011, 13(5): 1564-1569. |
| 19 | KRÖGER F A. Some aspects of the luminescence of solids[M]. New York: Elsevier Pub. Co., 1948. |
| 20 | KOLOBANOV V N, KAMENSKIKH I A, MIKHAILIN V V, et al. Optical and luminescent properties of anisotropic tungstate crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1/2): 496-503. |
| 21 | YAN T J, LI L P, TONG W M, et al. CdWO4 polymorphs: selective preparation, electronic structures, and photocatalytic activities[J]. Journal of Solid State Chemistry, 2011, 184(2): 357-364. |
| 22 | LOU Z D, HAO J H, COCIVERA M. Luminescence of ZnWO4 and CdWO4 thin films prepared by spray pyrolysis[J]. Journal of Luminescence, 2002, 99(4): 349-354. |
| 23 | MANJÓN F, LÓPEZ-SOLANO J, RAY S, et al. High-pressure structural and lattice dynamical study of HgWO4 [J]. Physical Review B, 2010, 82: 035212. |
| 24 | WU Y G, ZHANG J H, LONG B W, et al. The thermodynamic stability, electronic and photocatalytic properties of the ZnWO4(100) surface as predicted by screened hybrid density functional theory[J]. ACS Omega, 2021, 6(23): 15057-15067. |
| 25 | YADAV P, DEV BHUYAN P, ROUT S K, et al. Correlation between experimental and theoretical study of scheelite and wolframite-type tungstates[J]. Materials Today Communications, 2020, 25: 101417. |
| 26 |
HUANG B S, HART J N. DFT study of various tungstates for photocatalytic water splitting[J]. Physical Chemistry Chemical Physics, 2020, 22(3): 1727-1737.
DOI PMID |
| 27 | SARKER P, PRASHER D, GAILLARD N, et al. Predicting a new photocatalyst and its electronic properties by density functional theory[J]. Journal of Applied Physics, 2013, 114(13): 133508. |
| 28 | WANG J, YANG L J, ZHANG L. Constructed 3D hierarchical micro-flowers CoWO4@Bi2WO6 Z-scheme heterojunction catalyzer: two-channel photocatalytic H2O2 production and antibiotics degradation[J]. Chemical Engineering Journal, 2021, 420: 127639. |
| 29 | LI H P, HOU W G, TAO X T, et al. Conjugated polyene-modified Bi2MO6 (M=Mo or W) for enhancing visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 172: 27-36. |
| 30 |
JING L Q, ZHOU W, TIAN G H, et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts[J]. Chemical Society Reviews, 2013, 42(24): 9509-9549.
DOI PMID |
| 31 | SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. |
| 32 | ZORINA M L, SYRITSO L F. IR spectra and structures of tungstates[J]. Journal of Applied Spectroscopy, 1972, 16(6): 774-776. |
| 33 | DATURI M, BUSCA G, BOREL M M, et al. ChemInform abstract: vibrational and XRD study of the system CdWO4-CdMoO4 [J]. ChemInform, 1997, 28(35): 4358-4369. |
| 34 | ÅSBERG DAHLBORG M B, SVENSSON G. HgWO4 synthesized at high pressure and temperature[J]. Acta Crystallographica Section C Crystal Structure Communications, 2002, 58(3): i35-i36. |
| 35 | HAMANN D R, SCHLÜTER M, CHIANG C. Norm-conserving pseudopotentials[J]. Physical Review Letters, 1979, 43(20): 1494-1497. |
| 36 |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
| 37 | HERMAN F. Theoretical investigation of the electronic energy band structure of solids[J]. Reviews of Modern Physics, 1958, 30(1): 102-121. |
| 38 | PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992, 64(4): 1045-1097. |
| 39 | SRIVASTAVA G P, WEAIRE D. The theory of the cohesive energies of solids[J]. Advances in Physics, 1987, 36(4): 463-517. |
| 40 | MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. |
| 41 | MULLIKEN R S. Electronic population analysis on LCAO-MO molecular wave functions. I[J]. 1955, 23(10): 1833-1840. |
| 42 | 王云杰, 文杜林, 苏欣. A3PO4(A=Li, Na, K, Rb, Cs)电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(1): 123-131. |
| WANG Y J, WEN D L, SU X. A3PO4 (A = Li, Na, K, Rb, Cs) electronic structure and optical properties: a first-principles study[J]. Journal of Synthetic Crystals, 2024, 53(1): 123-131 (in Chinese). | |
| 43 | 张博, 王云杰, 齐亚杰, 等. 碱金属钼酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2024, 53(6): 999-1007. |
| ZHANG B, WANG Y J, QI Y J, et al. First principles study on the structure-property relationship of alkali metal molybdates[J]. Journal of Synthetic Crystals, 2024, 53(6): 999-1007 (in Chinese). | |
| 44 |
丁家福, 和志豪, 王云杰, 等. 通过硫代调控Ga、In、Tl磷酸盐光学性质的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 95-106.
DOI |
| DING J F, HE Z H, WANG Y J, et al. First-principles study on the regulation of optical properties of gallium, indium, and thallium phosphates through sulfur substitution[J]. Journal of Synthetic Crystals, 2025, 54(1): 95-106 (in Chinese). | |
| 45 | SU X, WANG Y, YANG Z H, et al. Experimental and theoretical studies on the linear and nonlinear optical properties of Bi2ZnOB2O6 [J]. The Journal of Physical Chemistry C, 2013, 117(27): 14149-14157. |
| 46 | ZHOU X Y, HUANG J B, CAI G M, et al. Large optical polarizability causing positive effects on the birefringence of planar-triangular BO3 groups in ternary borates[J]. Dalton Transactions, 2020, 49(10): 3284-3292. |
| 47 | GUO X J, GAO Z L, TAO X T. Recent advances in tellurite molybdate/tungstate crystals[J]. CrystEngComm, 2022, 24(43): 7516-7529. |
| 48 | PALMER B A, MORTE-RÓDENAS A, KARIUKI B M, et al. X-ray birefringence from a model anisotropic crystal[J]. The Journal of Physical Chemistry Letters, 2011, 2(18): 2346-2351. |
| 49 | LI Y Q, ZHANG X, ZHOU Y, et al. An optically anisotropic crystal with large birefringence arising from cooperative π orbitals[J]. Angewandte Chemie, 2022, 61(38): e202208811. |
| 50 | YANG H, JUSSILA H, AUTERE A, et al. Optical waveplates based on birefringence of anisotropic two-dimensional layered materials[J]. ACS Photonics, 2017, 4(12): 3023-3030. |
| 51 | CAO L L, PENG G, LIAO W B, et al. A microcrystal method for the measurement of birefringence[J]. CrystEngComm, 2020, 22(11): 1956-1961. |
| 52 | TUDI A, HAN S J, YANG Z H, et al. Potential optical functional crystals with large birefringence: recent advances and future prospects[J]. Coordination Chemistry Reviews, 2022, 459: 214380. |
| [1] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [2] | 解忧, 肖潇飒, 姜宁宁, 张涛. 二维BC6N/BN横向异质结的电学输运性质研究[J]. 人工晶体学报, 2025, 54(5): 825-831. |
| [3] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [4] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [5] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| [6] | 查显弧, 万玉喜, 张道华. β相氧化镓p型导电研究进展[J]. 人工晶体学报, 2025, 54(2): 177-189. |
| [7] | 郭满意, 吴佳兴, 杨帆, 王超, 王艳杰, 迟耀丹, 杨小天. ε-Ga2O3晶体及其本征缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(2): 212-218. |
| [8] | 莫秋燕, 张颂, 荆涛, 吴家隐. SO2和CO在ReS2表面吸附的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 107-114. |
| [9] | 张宁宁, 鱼海涛, 刘艳艳, 薛丹. 4d过渡金属掺杂单层WS2的电子结构和光学性质研究[J]. 人工晶体学报, 2025, 54(1): 77-84. |
| [10] | 王云杰, 和志豪, 丁家福, 苏欣. X2(PO4)2(X=Ba、Pb)和XPO4(X=Y、Bi)中阳离子对结构框架影响及双折射率来源研究[J]. 人工晶体学报, 2025, 54(1): 85-94. |
| [11] | 丁家福, 和志豪, 王云杰, 苏欣. 通过硫代调控Ga、In、Tl磷酸盐光学性质的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 95-106. |
| [12] | 郑权, 刘学超, 王浩, 朱新峰, 潘秀红, 陈锟, 邓伟杰, 汤美波, 徐浩, 吴鸿辉, 金敏. 铝掺杂对硒化铟晶体结构与性能的影响[J]. 人工晶体学报, 2024, 53(9): 1528-1535. |
| [13] | 焦思慧, 吴红萍, 俞洪伟. CsBa2ScB8O16:首例结构中同时含有零维[B3O6]基元和一维B—O链的稀土硼酸盐[J]. 人工晶体学报, 2024, 53(9): 1550-1559. |
| [14] | 莫秋燕, 欧满琳, 张颂, 荆涛, 吴家隐. VI族元素修饰对二维AlN电子性质影响的第一性原理研究[J]. 人工晶体学报, 2024, 53(9): 1620-1628. |
| [15] | 孙亮, 张钰, 王群. 休斯勒合金Mn2LiGe块体和(001)表面的电子结构和磁性质[J]. 人工晶体学报, 2024, 53(8): 1378-1385. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS