欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (2): 177-189.DOI: 10.16553/j.cnki.issn1000-985x.2024.0285

• 晶体生长、掺杂和缺陷 • 上一篇    下一篇

β相氧化镓p型导电研究进展

查显弧, 万玉喜, 张道华   

  1. 深圳平湖实验室,深圳 518111
  • 收稿日期:2024-11-12 发布日期:2025-03-04
  • 通信作者: 万玉喜,教授。E-mail:wanyuxi@phlab.com.cn;万玉喜,国家第三代半导体技术创新中心深圳综合平台主任、深圳平湖实验室主任、国家科技专家库专家、广东省重点领域研发计划“芯片设计与制造”战略专项总体专家组技术专家、中国有色金属学会宽禁带半导体专委会委员、中国电源学会元器件专委会委员、中国电工技术学会电子节能专业委员会委员、深圳半导体与集成电路产业联盟副理事长。长期从事功率半导体材料、器件和应用研究和产业成果转化工作。张道华,新加坡工程院院士。E-mail:zhangdaohua@phlab.com.cn;张道华,新加坡工程院院士,分别在山东大学和新南威尔士大学获得硕士和博士学位。1991年加入新加坡南洋理工大学。曾任新加坡光电协会主席,南洋理工大学参议员,电力与电子工程学院教授,卓越研究计划委员会主任,微电子学系副主任等职。主持了30多个研究项目,发表论文550余篇。目前是深圳平湖实验室第四代半导体首席科学家。
  • 作者简介:查显弧(1988—),男,安徽省人,博士,副研究员。E-mail:zhaxianhu@phlab.com.cn
  • 基金资助:
    深圳平湖实验室项目(224120)

Research Progress on p-Type Conduction of β Phase Gallium Oxide

ZHA Xianhu, WAN Yuxi, ZHANG Daohua   

  1. Shenzhen Pinghu Laboratory, Shenzhen 518111, China
  • Received:2024-11-12 Published:2025-03-04

摘要: β相氧化镓(β-Ga2O3)具有超宽带隙、高击穿电场和容易制备等优势,是功率器件的理想半导体材料。但由于β-Ga2O3价带顶能级位置低、能带色散关系平坦,其p型掺杂目前仍具有挑战性,限制了p-n结及双极性晶体管的开发。利用尺寸效应、缺陷调控、非平衡动力学及固溶提升价带顶能级等方案是目前实现β-Ga2O3 p型掺杂的主要策略。对于β-Ga2O3 p-n同质结和异质结,提高晶体质量、减少界面缺陷态是优化器件性能的关键问题。本文针对β-Ga2O3的p型导电问题,系统阐述了β-Ga2O3电子结构,实验表征及理论计算掺杂能级方法,p型掺杂困难原因,以及改进p型掺杂的突破性研究进展。最后简单介绍了β-Ga2O3 p-n同质结和异质结器件的相关工作。利用复合缺陷调控、非平衡动力学、固溶等方案,以及不同方案的协同实现体相β-Ga2O3的p型掺杂仍需要深入探索,p-n同质及异质结的器件性能需要进一步优化。

关键词: β-Ga2O3, p型导电, 电子结构, 受主能级, 固溶, p-n结

Abstract: β phase gallium oxide (β-Ga2O3) is an ideal semiconductor material for power devices based on its ultra-wide bandgap, high breakdown electric field, and easy preparation. However, it is still challenging to realize p-type doping of the β-Ga2O3 because of its relatively low energy of valence band maximum (VBM) and flat band dispersion near the VBM, which limits the development of p-n junctions and bipolar transistors. The main strategies for the p-type doping of β-Ga2O3 in recent research are based on size effect, defect regulation, non-equilibrium dynamic process, and solid solution. For the β-Ga2O3 p-n homojunction and heterojunction, improving crystal quality and reducing the interface defect states are the key issues for optimizing devices’ performances. This paper focuses on the p-type conductivity problem of β-Ga2O3, systematically reviews the electronic structure of β-Ga2O3, the experimental characterization and theoretical calculation method of doping levels, the reasons for p-type doping difficulty, and the breakthrough in research advancements for improving the p-type doping of β-Ga2O3. Finally, the relevant studies on the β-Ga2O3 p-n homojunction and heterojunction devices are briefly reviewed. It requires further exploration to realize p-type doping of bulk-phase β-Ga2O3 through complex-defect regulation, non-equilibrium dynamics, solid solution, and combining these schemes. The device performances of p-n homojunction and heterojunction also need further optimization.

Key words: β-Ga2O3, p-type conduction, electronic structure, acceptor level, solid solution, p-n junction

中图分类号: