欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (8): 1417-1425.DOI: 10.16553/j.cnki.issn1000-985x.2025.0030

• 研究论文 • 上一篇    下一篇

AlN介质层对GaN表面生长金刚石钝化膜的影响研究

梁礼峰1,2(), 郁鑫鑫1, 李忠辉1, 刘金龙2, 李成明2, 王鑫华3, 魏俊俊2()   

  1. 1.南京电子器件研究所,中国电科碳基电子重点实验室,南京 210016
    2.北京科技大学新材料技术研究院,北京 100083
    3.中国科学院微电子研究所,高频高压器件及集成电路研发中心,北京 100029
  • 收稿日期:2025-02-19 出版日期:2025-08-20 发布日期:2025-09-01
  • 通信作者: 魏俊俊,博士,教授。E-mail:weijj@ustb.edu.cn
  • 作者简介:梁礼峰(1999—),男,河南省人,硕士,工程师。E-mail:lianglifeng2021@163.com
  • 基金资助:
    国家自然科学基金(52172037);国家自然科学基金(52350362)

Effect of AlN Dielectric Layer on Growth of Diamond Passivation Film on GaN Surface

LIANG Lifeng1,2(), YU Xinxin1, LI Zhonghui1, LIU Jinlong2, LI Chengming2, WANG Xinhua3, WEI Junjun2()   

  1. 1.CETC Key Laboratory of Carbon-Based Electronics,Nanjing Electronic Devices Institute,Nanjing 210016,China
    2.Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,China
    3.High-Frequency High-Voltage Device and Integrated Circuits R&D Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China
  • Received:2025-02-19 Online:2025-08-20 Published:2025-09-01

摘要: GaN表面生长金刚石钝化膜可用于改善器件传热能力,提升器件功率特性及可靠性。在GaN和金刚石层中间的介质层,对于实现高质量的GaN表面金刚石(Diamond-on-GaN)至关重要。本研究采用原子层沉积(ALD)技术在GaN表面预先沉积了10 nm的晶态/非晶态混合的AlN介质层,并通过氧终端金刚石悬浮液在AlN层上实现了高密度静电自组装播种;随后通过优化的微波等离子体化学气相沉积(MPCVD)工艺再生长约120 nm厚的纳米晶金刚石(NCD)薄膜。表面氧终端调控的纳米金刚石悬浮液可以在AlN介质层表面实现高密度播种,结合梯度甲烷的MPCVD金刚石生长工艺,制备出了具有高结晶度、低粗糙度(Ra=15.2 nm)和低残余应力(0.84 GPa)的NCD薄膜。时域热反射(TDTR)测量表明,NCD薄膜的热导率约为123.85 W·m-1·K-1,GaN与NCD之间的有效界面热阻(TBReff)为(9.78±0.27) m2·K·GW-1。透射电子显微镜(TEM)分析表明,AlN介质层有效保护了GaN免受等离子体刻蚀,并实现了金刚石和GaN之间的光滑界面。本研究表明,采用薄的ALD AlN作为在GaN表面生长金刚石的介质层可以与氧终端金刚石籽晶实现静电自组装,从而提高金刚石形核密度,再通过梯度甲烷金刚石沉积工艺,能够在GaN上沉积出高质量的NCD薄膜并降低金刚石与GaN的界面热阻。

关键词: 纳米晶金刚石; GaN; AlN介质层; 热导率; 界面热阻; 原子层沉积; 静电自组装播种

Abstract: The growth of diamond passivation film on GaN surface can be used to improve the heat transfer ability of devices, and enhance the power characteristics and reliability of devices. The dielectric layer between GaN and diamond layers is crucial for achieving high-quality diamond on GaN surface. This study used atomic layer deposition (ALD) technology to pre-deposit a 10 nm crystalline/amorphous mixed AlN dielectric layer on the surface of GaN, and achieved high-density electrostatic self-assembly seeding on the AlN layer through surface terminal controlled diamond suspension; subsequently, an optimized microwave plasma chemical vapor deposition (MPCVD) process was used to grow nanocrystalline diamond(NCD)films with a thickness of approximately 120 nm. The surface oxygen terminal regulated nanodiamond suspension can achieve high-density seeding on the surface of AlN dielectric layer. Combined with gradient methane MPCVD diamond growth process, NCD thin films with high crystallinity, low roughness (Ra=15.2 nm), and low residual stress (0.84 GPa) were prepared. Time domain thermal reflection(TDTR)measurements indicate that the thermal conductivity of NCD film is approximately 123.85 W·m-1·K-1. The effective thermal boundary resistance (TBReff) between GaN and NCD is (9.78±0.27) m2·K·GW-1. Transmission electron microscopy (TEM) analysis shows that, AlN dielectric layer effectively protects GaN from plasma etching and achieves a smooth interface between diamond and GaN. This study shows that using thin ALD AlN as the dielectric layer for growing diamond on GaN surface can achieve electrostatic self-assembly with oxygen terminated diamond seeds, thereby increasing diamond nucleation density. Then, through gradient methane diamond deposition process, high-quality NCD films can be deposited on GaN and the thermal boundary resistance between diamond and GaN can be reduced.

Key words: nanocrystalline diamond; GaN; AlN dielectric layer; thermal conductivity; thermal boundary resistance; atomic layer deposition; electrostatic self-assembly seeding

中图分类号: