
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1714-1721.DOI: 10.16553/j.cnki.issn1000-985x.2025.0164
路佳丽1(
), 刘兆龙1,2, 金士锋1,2, 陈小龙1,2,3(
)
收稿日期:2025-07-28
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
陈小龙,博士,研究员。E-mail:chenx29@iphy.ac.cn
作者简介:路佳丽(1998—),女,安徽省人,博士研究生。E-mail:lujiali20@mails.ucas.ac.cn基金资助:
LU Jiali1(
), LIU Zhaolong1,2, JIN Shifeng1,2, CHEN Xiaolong1,2,3(
)
Received:2025-07-28
Online:2025-10-20
Published:2025-11-11
摘要: 有机-无机杂化忆容材料(CETM)2[InCl5(H2O)]因质子迁移诱导的巨大界面极化(Pr=31 654 μC/cm2)而备受关注,但其微观机制尚缺直接实验证据。本文通过重水同位素取代策略,合成氘化晶体(CETM)2[InCl5(D2O)],系统研究了氘化对结构、相变及电学性能的影响。X射线衍射与差示扫描量热分析表明,氘化后晶体结构(单斜空间群Pc)与相变行为(脱水温度332 K)基本不变。电学性能测试表明:氘化使离子电导率从4.35×10-7 S/cm降至1.28×10-7 S/cm,剩余极化强度由31 654 μC/cm2显著降低至18 811 μC/cm2。结合迁移能垒计算,证实极化衰减源于氘原子质量效应及氘键稳定性增强对质子迁移的抑制。本研究首次通过同位素效应实验验证质子迁移主导界面极化的微观机制,为调控忆容材料性能提供新策略。
中图分类号:
路佳丽, 刘兆龙, 金士锋, 陈小龙. 氘化对忆容材料(CETM)2[InCl5(H2O)]的界面极化调控[J]. 人工晶体学报, 2025, 54(10): 1714-1721.
LU Jiali, LIU Zhaolong, JIN Shifeng, CHEN Xiaolong. Deuteration-Induced Modulation of Interfacial Polarization in the Memcapacitive Material (CETM)2[InCl5(H2O)][J]. Journal of Synthetic Crystals, 2025, 54(10): 1714-1721.
| Compound | (C5H13NCl)2[InCl5(D2O)] |
|---|---|
| Temperature/K | 293 |
| Crystal system | Monoclinic |
| Space group | Pc(7) |
| a/Å | 15.589 5(5) |
| b/Å | 12.107 7(3) |
| c/Å | 11.439 4(3) |
| β/(°) | 91.784(2) |
| Volume/Å3 | 2 158.17(10) |
| Z | 4 |
| μ/mm-1 | 1.961 |
| F(000) | 1 112 |
| Radiation | Mo Kα (λ=0.710 73 Å) |
| 2θ range for date collection/(°) | 4.878 0 to 65.364 0 |
| Index ranges | -22 ≤h≤ 20 -16 ≤k≤ 18 -16 ≤l≤ 17 |
| Density/(g·cm-3) | 1.715 |
| Reflections collected | 11 300 |
| Goodness-of-fit on F2 | 1.044 |
| R1,ωR2[I > 2σ(I)] | R1=0.039 0, ωR2=0.098 1 |
表1 (CETM)2[InCl5(D2O)]的晶体学信息
Table 1 Crystallographic information of (CETM)2[InCl5(D2O)]
| Compound | (C5H13NCl)2[InCl5(D2O)] |
|---|---|
| Temperature/K | 293 |
| Crystal system | Monoclinic |
| Space group | Pc(7) |
| a/Å | 15.589 5(5) |
| b/Å | 12.107 7(3) |
| c/Å | 11.439 4(3) |
| β/(°) | 91.784(2) |
| Volume/Å3 | 2 158.17(10) |
| Z | 4 |
| μ/mm-1 | 1.961 |
| F(000) | 1 112 |
| Radiation | Mo Kα (λ=0.710 73 Å) |
| 2θ range for date collection/(°) | 4.878 0 to 65.364 0 |
| Index ranges | -22 ≤h≤ 20 -16 ≤k≤ 18 -16 ≤l≤ 17 |
| Density/(g·cm-3) | 1.715 |
| Reflections collected | 11 300 |
| Goodness-of-fit on F2 | 1.044 |
| R1,ωR2[I > 2σ(I)] | R1=0.039 0, ωR2=0.098 1 |
图2 室温下(CETM)2[InCl5(D2O)]的晶体结构。(a)室温下(CETM)2[InCl5(D2O)]的实验和根据SCXRD确定的结构模拟出来的PXRD图谱;(b)根据SCXRD确定的晶体结构,为了更好地区分,[InCl5(D2O)]2-的Cl原子用绿色显示,CETM+的Cl原子用黄色显示;(c)实验和模拟PXRD图谱的局部放大图;(d)CETM+和[InCl5(D2O)]2-的结构
Fig.2 Crystal structure of (CETM)2[InCl5(D2O)] at room temperature. (a) Experimental and SCXRD-derived simulated PXRD patterns of (CETM)2[InCl5(D2O)] at room temperature; (b) crystal structure determined by SCXRD, with Cl atoms of [InCl5(D2O)]2- shown in green and those of CETM+ in yellow for clarity; (c) magnified view of selected regions in the experimental and simulated PXRD patterns; (d) structures of CETM+ and [InCl5(D2O)]2-
图3 (CETM)2[InCl5(D2O)]单晶样品的单晶衍射原始数据。(a)和(b)为分别沿a*和c*倒易基矢方向投影,整齐的衍射斑点可由单畴模型指标化,排除了孪晶的可能性
Fig.3 Raw single-crystal diffraction data of the (CETM)2[InCl5(D2O)] single-crystal sample. (a) and (b) show projections along the a* and c* reciprocal basis vectors, respectively, the well-ordered diffraction spots can be indexed using a single-domain model, ruling out the possibility of twinning
图6 (CETM)2[InCl5(D2O)]在交、直流电压下的电学响应。(a)(CETM)2[InCl5(D2O)]在室温的Nyquist图;(b)40~200 V(间隔为40 V)直流电压作用下的电流响应
Fig.6 Electric response of (CETM)2[InCl5(D2O)] under AC and DC voltages. (a) Nyquist plot of (CETM)2[InCl5(D2O)] at room temperature; (b) current response under DC voltages of 40~200 V (step 40 V)
| [1] |
WANG X P, CUI B Y, JING L L, et al. Enabling low-power charge-domain nonvolatile computing-in-memory (CIM) with ferroelectric memcapacitor[J]. IEEE Transactions on Electron Devices, 2024, 71(4): 2404-2410.
DOI URL |
| [2] |
HWANG H, SONG M S, YOUN S, et al. True random number generator using memcapacitor with charge trapping layer[J]. IEEE Electron Device Letters, 2024, 45(8): 1464-1467.
DOI URL |
| [3] |
HWANG H, YU J S, YOUN S, et al. 2C-ternary content addressable memory in memcapacitor crossbar array with NAND flash structure[J]. Small, 2025, 21(9): 2408618.
DOI URL |
| [4] |
ZHOU Z P, JIAO L M, ZHENG Z J, et al. Ferroelectric capacitive memories: devices, arrays, and applications[J]. Nano Convergence, 2025, 12(1): 3.
DOI |
| [5] |
PERSHIN Y V, DI VENTRA M. Memory effects in complex materials and nanoscale systems[J]. Advances in Physics, 2011, 60(2): 145-227.
DOI URL |
| [6] | 钟维烈. 铁电体物理学[M]. 北京: 科学出版社, 1996. |
| ZHONG W L. Physics of ferroelectrics [M]. Beijing: Science Press, 1996 (in Chinese). | |
| [7] |
LIU N, ZHOU J R, ZHENG S Y, et al. Photoelectric in-memory logic and computing achieved in HfO2-based ferroelectric optoelectronic memcapacitors[J]. IEEE Electron Device Letters, 2024, 45(7): 1357-1360.
DOI URL |
| [8] |
QIAN W H, CHENG X F, ZHAO Y Y, et al. Independent memcapacitive switching triggered by bromide ion migration for quaternary information storage[J]. Advanced Materials, 2019, 31(37): 1806424.
DOI URL |
| [9] |
LIU R X, DONG R X, QIN S C, et al. A new type artificial synapse based on the organic copolymer memcapacitor[J]. Organic Electronics, 2020, 81: 105680.
DOI URL |
| [10] |
LEE H J, KIM J H, LEE S H, et al. Ga2O3-based optoelectronic memristor and memcapacitor synapse for in-memory sensing and computing applications[J]. Nanomaterials, 2024, 14(23): 1972.
DOI URL |
| [11] | CAI J W, YE J T, ZHONG Y N, et al. Solution-processed polymer memcapacitors with stimulus-controlled and evolvable synaptic functionalities: from short-term plasticity to long-term plasticity to metaplasticity[J]. ACS Applied Materials & Interfaces, 2024, 16(36): 47996-48004. |
| [12] |
LI B X, XIA F, DU B, et al. 2D halide perovskites for high-performance resistive switching memory and artificial synapse applications[J]. Advanced Science, 2024, 11(23): 2310263.
DOI URL |
| [13] |
BISQUERT J. Hysteresis, impedance, and transients effects in halide perovskite solar cells and memory devices analysis by neuron-style models[J]. Advanced Energy Materials, 2024, 14(26): 2400442.
DOI URL |
| [14] |
XU Z, LI Y X, XIA Y, et al. Organic frameworks memristor: an emerging candidate for data storage, artificial synapse, and neuromorphic device[J]. Advanced Functional Materials, 2024, 34(16): 2312658.
DOI URL |
| [15] |
BEILSTEN-EDMANDS J, EPERON G E, JOHNSON R D, et al. Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices[J]. Applied Physics Letters, 2015, 106(17): 173502.
DOI URL |
| [16] |
LU J L, LUO R, ZHOU J Y, et al. High, multiple, and nonvolatile polarizations in organic-inorganic hybrid [(CH3)3(CH2CH2Cl)N]2InCl5·H2O for memcapacitor[J]. Journal of the American Chemical Society, 2024, 146(1): 281-288.
DOI URL |
| [17] |
YANAGISAWA J, AOYAMA T, FUJII K, et al. Strongly enhanced polarization in a ferroelectric crystal by conduction-proton flow[J]. Journal of the American Chemical Society, 2024, 146(2): 1476-1483.
DOI PMID |
| [18] | ROBERTSON J M, UBUBELOHDE A R. Structure and thermal properties associated with some hydrogen bonds in crystals I. The isotope effect[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1939, 170(941): 222-240. |
| [19] | ROBERTSON J M, UBBELOHDE A R. Structure and thermal properties associated with some hydrogen bonds in crystals, II. Thermal expansion[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1939, 170(941): 241-251. |
| [20] |
BENEDICT H, LIMBACH H H, WEHLAN M, et al. Solid state15N NMR and theoretical studies of primary and secondary geometric H/D isotope effects on low-barrier NHN-hydrogen bonds[J]. Journal of the American Chemical Society, 1998, 120(12): 2939-2950.
DOI URL |
| [21] |
MATSUSHITA E, MATSUBARA T. Note on isotope effect in hydrogen bonded crystals[J]. Progress of Theoretical Physics, 1982, 67(1): 1-19.
DOI URL |
| [22] |
BLINC R. On the isotopic effects in the ferroelectric behaviour of crystals with short hydrogen bonds[J]. Journal of Physics and Chemistry of Solids, 1960, 13(3/4): 204-211.
DOI URL |
| [23] |
CHEN B, IVANOV I, KLEIN M L, et al. Hydrogen bonding in water[J]. Physical Review Letters, 2003, 91(21): 215503.
DOI URL |
| [24] |
WANG L, CERIOTTI M, MARKLAND T E. Quantum fluctuations and isotope effects in ab initio descriptions of water[J]. Journal of Chemical Physics, 2014, 141(10): 104502.
DOI URL |
| [25] |
MALIK R, STOLTE N, FORBERT H, et al. Accurate determination of isotope effects on the dynamics of H-bond breaking and making in liquid water[J]. The Journal of Physical Chemistry Letters, 2025, 16(15): 3727-3733.
DOI URL |
| [26] |
KATRUSIAK A, SZAFRAŃSKI M. Ferroelectricity in NH⋯N hydrogen bonded crystals[J]. Physical Review Letters, 1999, 82(3): 576-579.
DOI URL |
| [27] |
KOVAL S, KOHANOFF J, MIGONI R L, et al. Ferroelectricity and isotope effects in hydrogen-bonded KDP crystals[J]. Physical Review Letters, 2002, 89(18): 187602.
DOI URL |
| [28] |
SONG X J, ZHANG Z X, CHEN X G, et al. Bistable state of protons for low-voltage memories[J]. Journal of the American Chemical Society, 2020, 142(19): 9000-9006.
DOI URL |
| [29] | SHELDRICK G M. SHELXT-Integrated space-group and crystal-structure determination[J]. Acta Crystallographica Section A, 2015, 71(1): 3-8. |
| [30] |
DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(2): 339-341.
DOI URL |
| [31] | SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica Section C, Structural Chemistry, 2015, 71( Pt 1): 3-8. |
| [32] |
ZHANG Y, ZHANG W, LI S H, et al. Ferroelectricity induced by ordering of twisting motion in a molecular rotor[J]. Journal of the American Chemical Society, 2012, 134(26): 11044-11049.
DOI PMID |
| [33] |
TAYLOR J M, MAH R K, MOUDRAKOVSKI I L, et al. Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework[J]. Journal of the American Chemical Society, 2010, 132(40): 14055-14057.
DOI URL |
| [34] |
COLE K S, COLE R H. Dispersion and absorption in dielectrics I. alternating current characteristics[J]. The Journal of Chemical Physics, 1941, 9(4): 341-351.
DOI URL |
| [35] |
SCHEINER S, ČUMA M. Relative stability of hydrogen and deuterium bonds[J]. Journal of the American Chemical Society, 1996, 118(6): 1511-1521.
DOI URL |
| [36] |
SOBCZYK L, OBRZUD M, FILAROWSKI A. H/D isotope effects in hydrogen bonded systems[J]. Molecules, 2013, 18(4): 4467-4476.
DOI PMID |
| [37] | FINK D J, MYERS E G. Deuteron-to-proton mass ratio from the cyclotron frequency ratio of H2+ to D+ with H2+ in a resolved vibrational state[J]. Physical Review Letters, 2020, 124(1): 013001. |
| [38] |
ØSTERGAARD L F, HAMMERUM S. Secondary kinetic deuterium isotope effects on unimolecular cleavage reactions: zero-point vibrational energy and qualitative RRKM theory[J]. Mass Spectrometry Reviews, 2021, 40(6): 821-839.
DOI URL |
| [39] | RAMACHANDRA RAO C N. Effect of deuteration on hydrogen bonds[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1975, 71: 980. |
| [40] |
BUCKINGHAM A D, LIU F C. Differences in the hydrogen and deuterium bonds[J]. International Reviews in Physical Chemistry, 1981, 1(2): 253-269.
DOI URL |
| [41] |
LIU C D, YAO Z S, TAO J. Impact of H/D isotopic effects on the physical properties of materials[J]. Inorganic Chemistry Frontiers, 2025, 12(3): 876-896.
DOI URL |
| [1] | 罗诗健, 熊子龙, 杨凤华, 陈前林, 李翠芹. 快离子导体Li1.5Y0.5Zr1.5(PO4)3包覆层对富镍三元正极材料电化学性能的影响[J]. 人工晶体学报, 2022, 51(7): 1257-1269. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS