
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1722-1731.DOI: 10.16553/j.cnki.issn1000-985x.2025.0187
陈鑫晨(
), 车王飞, 吴雅博, 李广卯, 崔晨(
), 杨志华, 潘世烈(
)
收稿日期:2025-08-27
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
崔晨,博士,助理研究员。E-mail:cuichen@ms.xjb.ac.cn;潘世烈,博士,研究员。E-mail:slpan@ms.xjb.ac.cn
作者简介:陈鑫晨(1998—),男,江西省人,硕士研究生。E-mail:qobayxvh81@foxmail.com基金资助:
CHEN Xinchen(
), CHE Wangfei, WU Yabo, LI Guangmao, CUI Chen(
), YANG Zhihua, PAN Shilie(
)
Received:2025-08-27
Online:2025-10-20
Published:2025-11-11
摘要: 本文在真空条件下采用高温溶液法自发结晶,成功合成了两例新型硫代硅酸盐化合物Rb2CdSi3Se8和K2HgSi3S8,这两种化合物均结晶于正交晶系非中心对称的P212121空间群。能量色散X射线光谱表征结果证实,两种化合物中各目标元素的比例与理论化学式相符。第一性原理计算表明,Rb2CdSi3Se8和K2HgSi3S8分别具有较大的双折射值(0.167@1 064 nm和0.118@1 064 nm),其光学各向异性主要是由[MSi3Q8]2-二维阴离子层贡献。后续将通过优化助熔剂体系获取两种化合物的纯相粉末。
中图分类号:
陈鑫晨, 车王飞, 吴雅博, 李广卯, 崔晨, 杨志华, 潘世烈. Rb2CdSi3Se8和K2HgSi3S8晶体的合成及其光学性能研究[J]. 人工晶体学报, 2025, 54(10): 1722-1731.
CHEN Xinchen, CHE Wangfei, WU Yabo, LI Guangmao, CUI Chen, YANG Zhihua, PAN Shilie. Synthesis and Optical Properties of Rb2CdSi3Se8 and K2HgSi3S8 Crystals[J]. Journal of Synthetic Crystals, 2025, 54(10): 1722-1731.
| Parameter | Rb2CdSi3Se8 | K2HgSi3S8 |
|---|---|---|
| Formula weight | 999.29 | 619.54 |
| Temperature/K | 298 | |
| Crystal system | Orthorhombic | |
| Space group | P212121 (No.19) | |
| a/Å | 7.554 3(14) | 7.161 0(7) |
| b/Å | 12.647(2) | 12.065 1(10) |
| c/Å | 17.322(3) | 16.386 6(13) |
| Volume/Å3 | 1 037.21(13) | 1 415.8(2) |
| Z | 4 | 4 |
| Calculated density/(g·cm-3) | 4.011 | 2.907 |
| Completeness/% | 97.6 | 99.5 |
| Absorption coefficient/mm-1 | 24.942 | 12.851 |
| F (000) | 1 744.0 | 1 152.0 |
| Goodness-of-fit on F2 | 1.038 | 1.151 |
| Final R indexes [Fo2>2σ(Fo2)]a | R1 =0.038 1, wR2 =0.094 7 | R1 =0.027 6, wR2 = 0.067 9 |
| Final R indexes (all data)a | R1 =0.043 9, wR2 = 0.097 5 | R1 =0.032 2, wR2 = 0.070 8 |
| Largest diff peak and hole/(e·Å-3) | 1.04 and -1.12 | 0.94 and -0.81 |
| Flack parameter | 0.029(10) | 0.399(9) |
表1 Rb2CdSi3Se8和K2HgSi3S8的晶体数据和结构精修
Table 1 Crystal data and structure refinements for Rb2CdSi3Se8 and K2HgSi3S8
| Parameter | Rb2CdSi3Se8 | K2HgSi3S8 |
|---|---|---|
| Formula weight | 999.29 | 619.54 |
| Temperature/K | 298 | |
| Crystal system | Orthorhombic | |
| Space group | P212121 (No.19) | |
| a/Å | 7.554 3(14) | 7.161 0(7) |
| b/Å | 12.647(2) | 12.065 1(10) |
| c/Å | 17.322(3) | 16.386 6(13) |
| Volume/Å3 | 1 037.21(13) | 1 415.8(2) |
| Z | 4 | 4 |
| Calculated density/(g·cm-3) | 4.011 | 2.907 |
| Completeness/% | 97.6 | 99.5 |
| Absorption coefficient/mm-1 | 24.942 | 12.851 |
| F (000) | 1 744.0 | 1 152.0 |
| Goodness-of-fit on F2 | 1.038 | 1.151 |
| Final R indexes [Fo2>2σ(Fo2)]a | R1 =0.038 1, wR2 =0.094 7 | R1 =0.027 6, wR2 = 0.067 9 |
| Final R indexes (all data)a | R1 =0.043 9, wR2 = 0.097 5 | R1 =0.032 2, wR2 = 0.070 8 |
| Largest diff peak and hole/(e·Å-3) | 1.04 and -1.12 | 0.94 and -0.81 |
| Flack parameter | 0.029(10) | 0.399(9) |
| Atom | x/104 | y/104 | z/104 | Ueq/(103Å2) | Wyckoff position | BVS |
|---|---|---|---|---|---|---|
| Rb2CdSi3Se8 | ||||||
| Rb1 | 2 822(2) | 6 995.0(13) | 6 558.9(9) | 48.2(4) | 4a | 0.82 |
| Rb2 | 2 569.6(18) | 6 238.9(13) | 10 518.0(7) | 41.2(4) | 4a | 0.91 |
| Cd1 | 200.7(10) | 5 000.7(7) | 8 479.1(5) | 25.7(2) | 4a | 2.03 |
| Si1 | 7 667(4) | 4 531(3) | 6 741.3(16) | 19.4(6) | 4a | 4.03 |
| Si3 | 5 229(4) | 5 322(2) | 8 448.8(16) | 17.4(6) | 4a | 4.12 |
| Si2 | 7 421(4) | 5 579(3) | 5 172.5(16) | 18.4(6) | 4a | 2.02 |
| Se1 | 7 985.3(18) | 6 278.4(10) | 6 374.1(6) | 28.0(3) | 4a | 2.01 |
| Se2 | 7 270.2(17) | 3 827.1(10) | 5 522.7(6) | 24.1(3) | 4a | 2.05 |
| Se3 | 10 011.8(17) | 3 761.2(11) | 7 271.5(6) | 29.8(3) | 4a | 1.92 |
| Se4 | 5 013.0(17) | 4 262.0(10) | 7 351.8(6) | 25.6(3) | 4a | 1.98 |
| Se5 | 4 920.9(17) | 6 239.5(11) | 4 705.3(6) | 28.8(3) | 4a | 2.08 |
| Se6 | 9 925.4(16) | 5 897.4(9) | 4 458.5(6) | 23.9(3) | 4a | 2.05 |
| Se7 | 7 588.5(14) | 6 367.8(10) | 8 438.6(7) | 23.3(3) | 4a | 2.03 |
| Se8 | 2 827.3(14) | 6 346.5(10) | 8 501.7(7) | 23.6(3) | 4a | 2.02 |
| K2HgSi3S8 | ||||||
| K1 | 7 252(5) | 7 063(2) | 8 412.1(16) | 52.3(7) | 4a | 0.79 |
| K2 | 2 453(4) | 8 674(2) | 5 528.2(14) | 42.9(6) | 4a | 0.86 |
| Hg1 | 9 684.0(5) | 5 015.3(3) | 6 516.6(2) | 31.34(13) | 4a | 2.06 |
| Si1 | 2 391(4) | 4 424.7(16) | 4 826.0(12) | 15.7(4) | 4a | 4.08 |
| Si2 | 2 686(4) | 5 441.6(17) | 3 258.9(12) | 16.3(5) | 4a | 4.02 |
| Si3 | 4 684(3) | 5 343.0(15) | 6 543.6(12) | 15.2(4) | 4a | 3.98 |
| S1 | 2 227(4) | 6 132.2(16) | 4 462.1(12) | 23.2(5) | 4a | 2.03 |
| S2 | 3 012(4) | 3 747.7(16) | 3 644.9(12) | 27.2(5) | 4a | 2.05 |
| S3 | -78(4) | 3 777.6(18) | 5 268.0(13) | 30.2(5) | 4a | 1.97 |
| S4 | 4 811(3) | 4 137.4(16) | 5 559.7(12) | 24.3(5) | 4a | 1.92 |
| S5 | 101(3) | 5 688.2(18) | 2 634.1(13) | 25.9(5) | 4a | 2.03 |
| S6 | 4 993(4) | 6 197.4(18) | 2 747.7(13) | 28.5(5) | 4a | 2.04 |
| S7 | 2 372(3) | 6 364.1(15) | 6 549.7(13) | 21.9(4) | 4a | 2.03 |
| S8 | 7 062(3) | 6 336.1(15) | 6 482.1(15) | 23.9(4) | 4a | 2.05 |
表2 Rb2CdSi3Se8和K2HgSi3S8的原子坐标、等效各向同性位移参数和BVS键价计算结果
Table 2 Atomic coordinates, equivalent isotropic displacement parameters and BVS of Rb2CdSi3Se8 and K2HgSi3S8
| Atom | x/104 | y/104 | z/104 | Ueq/(103Å2) | Wyckoff position | BVS |
|---|---|---|---|---|---|---|
| Rb2CdSi3Se8 | ||||||
| Rb1 | 2 822(2) | 6 995.0(13) | 6 558.9(9) | 48.2(4) | 4a | 0.82 |
| Rb2 | 2 569.6(18) | 6 238.9(13) | 10 518.0(7) | 41.2(4) | 4a | 0.91 |
| Cd1 | 200.7(10) | 5 000.7(7) | 8 479.1(5) | 25.7(2) | 4a | 2.03 |
| Si1 | 7 667(4) | 4 531(3) | 6 741.3(16) | 19.4(6) | 4a | 4.03 |
| Si3 | 5 229(4) | 5 322(2) | 8 448.8(16) | 17.4(6) | 4a | 4.12 |
| Si2 | 7 421(4) | 5 579(3) | 5 172.5(16) | 18.4(6) | 4a | 2.02 |
| Se1 | 7 985.3(18) | 6 278.4(10) | 6 374.1(6) | 28.0(3) | 4a | 2.01 |
| Se2 | 7 270.2(17) | 3 827.1(10) | 5 522.7(6) | 24.1(3) | 4a | 2.05 |
| Se3 | 10 011.8(17) | 3 761.2(11) | 7 271.5(6) | 29.8(3) | 4a | 1.92 |
| Se4 | 5 013.0(17) | 4 262.0(10) | 7 351.8(6) | 25.6(3) | 4a | 1.98 |
| Se5 | 4 920.9(17) | 6 239.5(11) | 4 705.3(6) | 28.8(3) | 4a | 2.08 |
| Se6 | 9 925.4(16) | 5 897.4(9) | 4 458.5(6) | 23.9(3) | 4a | 2.05 |
| Se7 | 7 588.5(14) | 6 367.8(10) | 8 438.6(7) | 23.3(3) | 4a | 2.03 |
| Se8 | 2 827.3(14) | 6 346.5(10) | 8 501.7(7) | 23.6(3) | 4a | 2.02 |
| K2HgSi3S8 | ||||||
| K1 | 7 252(5) | 7 063(2) | 8 412.1(16) | 52.3(7) | 4a | 0.79 |
| K2 | 2 453(4) | 8 674(2) | 5 528.2(14) | 42.9(6) | 4a | 0.86 |
| Hg1 | 9 684.0(5) | 5 015.3(3) | 6 516.6(2) | 31.34(13) | 4a | 2.06 |
| Si1 | 2 391(4) | 4 424.7(16) | 4 826.0(12) | 15.7(4) | 4a | 4.08 |
| Si2 | 2 686(4) | 5 441.6(17) | 3 258.9(12) | 16.3(5) | 4a | 4.02 |
| Si3 | 4 684(3) | 5 343.0(15) | 6 543.6(12) | 15.2(4) | 4a | 3.98 |
| S1 | 2 227(4) | 6 132.2(16) | 4 462.1(12) | 23.2(5) | 4a | 2.03 |
| S2 | 3 012(4) | 3 747.7(16) | 3 644.9(12) | 27.2(5) | 4a | 2.05 |
| S3 | -78(4) | 3 777.6(18) | 5 268.0(13) | 30.2(5) | 4a | 1.97 |
| S4 | 4 811(3) | 4 137.4(16) | 5 559.7(12) | 24.3(5) | 4a | 1.92 |
| S5 | 101(3) | 5 688.2(18) | 2 634.1(13) | 25.9(5) | 4a | 2.03 |
| S6 | 4 993(4) | 6 197.4(18) | 2 747.7(13) | 28.5(5) | 4a | 2.04 |
| S7 | 2 372(3) | 6 364.1(15) | 6 549.7(13) | 21.9(4) | 4a | 2.03 |
| S8 | 7 062(3) | 6 336.1(15) | 6 482.1(15) | 23.9(4) | 4a | 2.05 |
图2 Rb2CdSi3Se8的晶体结构图。(a)[Rb(1)Se7]多面体,其中Rb—Se键长为3.464~3.819 ?;(b)[Rb(2)Se8]多面体,其中Rb—Se键长为3.507~3.889 ?;(c)[CdSe4]四面体,其中Cd—Se键长为2.615~2.642 ?;(d)[Si(3)Se4]多面体,其中Si—Se键长为2.224~2.312 ?;(e)[CdSi3Se8]2-二维无限链;(f)[CdSiSe6]-一维无限链;(g)[Si2Se6]4-二聚体,其中Si—Se键长为2.218~2.312 ?;(h)沿[100]方向观察的整体结构图;(i) 沿[010]方向观察的整体结构图
Fig.2 Crystal structure of Rb2CdSi3Se8. (a) [Rb(1)Se7] polyhedron with Rb—Se bond lengths of 3.464~3.819 ?; (b) [Rb(2)Se8] polyhedron with Rb—Se bond lengths of 3.507~3.889 ?; (c) [CdSe4] tetrahedron with Cd—Se bond lengths of 2.615~2.642 ?; (d) [Si(3)Se4] polyhedron with Si—Se bond lengths of 2.224~2.312 ?; (e) [CdSi3Se8]2- two-dimensional infinite chain; (f) [CdSiSe6]- one-dimensional infinite chain; (g) [Si2Se6]4- dimer with Si—Se bond lengths of 2.218~2.312 ?; (h) overall structural view observed along the [100] direction; (i) overall structural view observed along the [010] direction
图3 Rb2CdSi3Se8和K2HgSi3S8的理论计算结果。(a)Rb2CdSi3Se8的能带结构;(b)Rb2CdSi3Se8的电子态密度图;(c)Rb2CdSi3Se8的计算折射率色散曲线,该化合物在1 064 nm处的双折射值为0.167;(d)K2HgSi3S8的能带结构;(e)K2HgSi3S8的电子态密度图;(f)K2HgSi3S8的计算折射率色散曲线,该化合物在1 064 nm处的双折射值为0.118
Fig.3 Theoretical calculation results of Rb2CdSi3Se8 and K2HgSi3S8. (a) Band structure of Rb2CdSi3Se8; (b) density of states (DOS) diagram of Rb2CdSi3Se8; (c) calculated refractive index dispersion curve of Rb2CdSi3Se8, with the birefringence determined to be 0.167 at 1 064 nm; (d) band structure of K2HgSi3S8; (e) density of states (DOS) diagram of K2HgSi3S8; (f) calculated refractive index dispersion curve of K2HgSi3S8, with the birefringence determined to be 0.118 at 1 064 nm
图4 Rb2CdSi3Se8和K2HgSi3S8的光学各向异性起源的计算结果。Rb2CdSi3Se8(a)和K2HgSi3S8(b)的电子局域函数;(c)Rb2CdSi3Se8和K2HgSi3S8的响应电荷分布各向异性模型计算结果
Fig.4 Calculation results of the origin of optical anisotropy in Rb2CdSi3Se8 and K2HgSi3S8. ELF of Rb2CdSi3Se8 (a) and K2HgSi3S8 (b); (c) results of calculated REDA models for Rb2CdSi3Se8 and K2HgSi3S8
| [1] | 杨 超, 高志强, 张宇露, 等. 中远红外高功率量子级联激光技术研究进展[J]. 遥测遥控, 2022, 43(4): 126-146. |
| YANG C, GAO Z Q, ZHANG Y L, et al. Recent progress of mid-and-far infrared high power quantum cascade laser technology[J]. Journal of Telemetry, Tracking and Command, 2022, 43(4): 126-146 (in Chinese). | |
| [2] |
ELKHAZRAJI A, SHAKFA M K, ABUALSAUD N, et al. Laser-based sensing in the long-wavelength mid-infrared: chemical kinetics and environmental monitoring applications[J]. Applied Optics, 2023, 62(6): A46-A58.
DOI URL |
| [3] |
SONAWANE H R, MAHULIKAR S P. Tactical air warfare: generic model for aircraft susceptibility to infrared guided missiles[J]. Aerospace Science and Technology, 2011, 15(4): 249-260.
DOI URL |
| [4] | 何 楠, 公丕富, 林哲帅. A7MⅡRE2(B5O10)3 系列紫外非线性光学晶体的研究进展[J]. 人工晶体学报, 2022, 51(9): 1598-1607.HEN, GONGPF, LINZS. Development of A 7MⅡRE2(B5O10)3 series ultraviolet nonlinear optical crystals[J]. Journal of Synthetic Crystals, 2022, 51(9): 1598-1607 (in Chinese). |
| [5] | 陆镇涛, 郭胜平. 硫属卤化物红外二阶非线性光学晶体材料的研究进展[J]. 人工晶体学报, 2020, 49(8): 1443-1456. |
| LU Z T, GUO S P. Research progress of chalcohalide-type IR second-order nonlinear optical crystalline materials[J]. Journal of Synthetic Crystals, 2020, 49(8): 1443-1456 (in Chinese). | |
| [6] | 李春霄, 郭扬武, 李 壮, 等. 新型可实用化红外非线性光学晶体研究进展[J]. 人工晶体学报, 2019, 48(10): 1799-1813. |
| LI C X, GUO Y W, LI Z, et al. Recent progress on practical new infrared nonlinear optical crystals[J]. Journal of Synthetic Crystals, 2019, 48(10): 1799-1813 (in Chinese). | |
| [7] | 方 攀, 袁泽锐, 陈 莹, 等. 新型红外非线性光学晶体BaGa2GeSe6的生长与器件制备[J]. 人工晶体学报, 2020, 49(2): 193-194+204. |
| FANG P, YUAN Z R, CHEN Y, et al. Growth and device fabrication of new infrared nonlinear optical crystal BaGa2GeSe6 [J]. Journal of Synthetic Crystals, 2020, 49(2): 193-194+204 (in Chinese). | |
| [8] | 黄 巍, 何知宇, 陈宝军, 等. 中远红外非线性光学晶体AgGaGe n Q2( n+1)(Q=S、Se)研究进展[J]. 人工晶体学报, 2020, 49(8): 1417-1426. |
| HUANG W, HE Z Y, CHEN B J, et al. Research progress of middle and far infrared nonlinear optical crystals AgGaGe n Q2( n+1)(Q=S, Se)[J]. Journal of Synthetic Crystals, 2020, 49(8): 1417-1426 (in Chinese). | |
| [9] |
LI H H, WANG Y K, LIAO L S. Near-infrared luminescent materials incorporating rare earth/transition metal ions: from materials to applications[J]. Advanced Materials, 2024, 36(30): 2403076.
DOI URL |
| [10] | 贾 宁, 王善朋, 陶绪堂. 中远红外非线性光学晶体研究进展[J]. 物理学报, 2018, 67(24): 7-18. |
| JIA N, WANG S P, TAO X T. Research progress of mid-and far-infrared nonlinear optical crystals[J]. Acta Physica Sinica, 2018, 67(24): 7-18 (in Chinese). | |
| [11] |
ISAENKO L, DONG L F, MELNIKOVA S V, et al. Phase transitions and nonlinear optical property modifications in BaGa4Se7 [J]. Inorganic Chemistry, 2024, 63(21): 10042-10049.
DOI URL |
| [12] | 陈金东, 林晨升, 叶 宁. 磷属化物非线性光学晶体研究进展[J]. 人工晶体学报, 2020, 49(8): 1405-1411. |
| CHEN J D, LIN C S, YE N. Research progress on pnictide nonlinear optical crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1405-1411 (in Chinese). | |
| [13] | 储冬冬, 杨志华, 潘世烈. 数据驱动的新型非线性光学材料理论设计研究进展[J]. 人工晶体学报, 2024, 53(9): 1475-1493. |
| CHU D D, YANG Z H, PAN S L. Research progress on theoretical design of nonlinear optical materials via data-driven approach[J]. Journal of Synthetic Crystals, 2024, 53(9): 1475-1493 (in Chinese). | |
| [14] | 王善朋, 刘贯东, 施 琼, 等. 新型红外非线性光学晶体LiGaTe2的多晶合成与晶体生长[J]. 人工晶体学报, 2011, 40(4): 822-827. |
| WANG S P, LIU G D, SHI Q, et al. Synthesis and crystal growth of novel infrared nonlinear optical crystal LiGaTe2 [J]. Journal of Synthetic Crystals, 2011, 40(4): 822-827 (in Chinese). | |
| [15] |
CHAI X D, LI M Z, LIN S J, et al. Cs4Zn5P6S18I2: the largest birefringence in chalcohalide achieved by highly polarizable nonlinear optical functional motifs[J]. Small, 2023, 19(46): 2303847.
DOI URL |
| [16] |
REN Q X, CHU Y, JIN W Q, et al. Hg4InS2Cl5: achieving giant optical anisotropy by introducing well-aligned linear [Hg2S2] units[J]. Advanced Optical Materials, 2025, 13(3): 2402170.
DOI URL |
| [17] |
CHEN M M, LIU X, TUDI A, et al. AI2Mg3Ga12S22 (AI = K, Rb): t2-type supertetrahedra coupled with [MgS6] octahedra for designing wide-band gap infrared nonlinear optical materials with well-balanced properties[J]. Science China Materials, 2025, 68(4): 1030-1037.
DOI |
| [18] |
WANG L N, TU C C, GAO H B, et al. Clamping effect driven design and fabrication of new infrared birefringent materials with large optical anisotropy[J]. Science China Chemistry, 2023, 66(4): 1086-1093.
DOI |
| [19] | LI X Y, CHENG X Y, HU C L, et al. From holodirected to hemidirected coordination activated by oxygenation strategy: a facile route to long wave infrared birefringent crystal[J]. Angewandte Chemie International Edition, 2025, 64(20): e202501481. |
| [20] |
GUO Y W, LI Z, LEI Z T, et al. Synthesis, growth of crack-free large-size BaGa4Se7 crystal, and annealing studies[J]. Crystal Growth & Design, 2019, 19(2): 1282-1287.
DOI URL |
| [21] | 陈 莹, 袁泽锐, 方 攀, 等. 新型红外非线性光学晶体SrCdGeSe4生长与性质表征[J]. 人工晶体学报, 2020, 49(8): 1505-1508. |
| CHEN Y, YUAN Z R, FANG P, et al. Growth and characterization of new infrared nonlinear optical crystal SrCdGeSe4 [J]. Journal of Synthetic Crystals, 2020, 49(8): 1505-1508 (in Chinese). | |
| [22] |
CHEN W F, JIANG X M, PEI S M, et al. Ternary AGa5S8 (A = K, Rb, Cs): promising infrared nonlinear optical materials rationally realized by “one-for-multiple substitution” strategy[J]. Science China Materials, 2023, 66(2): 740-747.
DOI |
| [23] |
WANG P, CHU Y, TUDI A, et al. The combination of structure prediction and experiment for the exploration of alkali-earth metal-contained chalcopyrite-like IR nonlinear optical material[J]. Advanced Science, 2022, 9(15): 2106120.
DOI URL |
| [24] |
YU P, ZHOU L J, CHEN L. Noncentrosymmetric inorganic open-framework chalcohalides with strong middle IR SHG and red emission: Ba3AGa5Se10Cl2 (A = Cs, Rb, K)[J]. Journal of the American Chemical Society, 2012, 134(4): 2227-2235.
DOI URL |
| [25] |
LI Y Y, LIU P F, HU L, et al. Strong IR NLO material Ba4MGa4Se10Cl2: highly improved laser damage threshold via dual ion substitution synergy[J]. Advanced Optical Materials, 2015, 3(7): 957-966.
DOI URL |
| [26] |
LI G M, CHU Y, ZHOU Z X. From AgGaS2 to Li2ZnSiS4: realizing impressive high laser damage threshold together with large second-harmonic generation response[J]. Chemistry of Materials, 2018, 30(3): 602-606.
DOI URL |
| [27] | 李广卯, 武 奎, 潘世烈. Li2BaSiSe4: 一种具有显著二次倍频效应的新型复合金属硒化物[J]. 科学通报, 2019, 64(16): 1671-1678. |
| LI G M, WU K, PAN S L. Li2BaSiSe4: a new metal-mixed selenide with outstanding second-harmonic generation[J]. Chinese Science Bulletin, 2019, 64(16): 1671-1678 (in Chinese). | |
| [28] |
SONG Y F, QIAN Z, ZHOU B R, et al. A non-centrosymmetric chalcohalide synthesized through the combination of chemical tailoring with aliovalent substitution[J]. Chemical Communications, 2023, 59(22): 3309-3312.
DOI URL |
| [29] |
LIN H, ZHOU L J, CHEN L. Sulfides with strong nonlinear optical activity and thermochromism: ACd4Ga5S12 (A=K, Rb, Cs)[J]. Chemistry of Materials, 2012, 24(17): 3406-3414.
DOI URL |
| [30] |
ZHOU M L, JIANG X X, YANG Y, et al. K2ZnSn3Se8: a non-centrosymmetric zinc selenidostannate(Ⅳ) featuring interesting covalently bonded [ZnSn3Se8]2-layer and exhibiting intriguing second harmonic generation activity[J]. Chemistry-An Asian Journal, 2017, 12(12): 1282-1285.
DOI URL |
| [31] |
JI B H, WANG F, WU K, et al. d6 versus d10, which is better for second harmonic generation susceptibility?A case study of K2TGe3Ch8 (T=Fe, Cd; Ch=S, Se)[J]. Inorganic Chemistry, 2023, 62(1): 574-582.
DOI URL |
| [32] |
LUO X Y, LIANG F, ZHOU M L, et al. K2ZnGe3S8: a congruent-melting infrared nonlinear-optical material with a large band gap[J]. Inorganic Chemistry, 2018, 57(15): 9446-9452.
DOI URL |
| [33] |
MORRIS C D, LI H, JIN H, et al. Cs2MIIMIV3Q8 (Q = S, Se, Te): an extensive family of layered semiconductors with diverse band gaps[J]. Chemistry of Materials, 2013, 25(16): 3344-3356.
DOI URL |
| [34] |
SHELDRICK G M. A short history of SHELX [J]. Acta Crystallographica Section A Foundations of Crystallography, 2008, 64(1): 112-122.
DOI URL |
| [35] | Sheldrick G M. SADABS: A program for exploiting the redundancy of area-detector X-ray data[J]. University of Göttingen, Göttingen, Germany, 1999. |
| [36] |
SPEK A L. Single-crystal structure validation with the program PLATON[J]. Journal of Applied Crystallography, 2003, 36(1): 7-13.
DOI URL |
| [37] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
| [38] |
RAPPE A M, RABE K M, KAXIRAS E, et al. Optimized pseudopotentials[J]. Physical Review B, 1990, 41(2): 1227-1230.
PMID |
| [39] |
SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2744.
DOI URL |
| [40] | ZHANG F F, CHEN Z L, CUI C, et al. A full breakthrough in vacuum ultraviolet nonlinear optical performance of NH4B4O6F[J]. arXiv preprint arXiv: , 2025. |
| [41] |
SHI G, WANG Y, ZHANG F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. J Am Chem Soc, 2017, 139(31): 10645-10648.
DOI URL |
| [42] |
WANG X F, WANG Y, ZHANG B B, et al. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units[J]. Angewandte Chemie International Edition, 2017, 56(45): 14119-14123.
DOI URL |
| [43] |
MUTAILIPU M, ZHANG M, ZHANG B B, et al. SrB5O7F3 functionalized with [B5O9F3]6- chromophores: accelerating the rational design of deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57(21): 6095-6099.
DOI URL |
| [44] |
WANG Y, ZHANG B B, YANG Z H, et al. Cation-tuned synthesis of fluorooxoborates: towards optimal deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57(8): 2150-2154.
DOI URL |
| [45] |
LEI B H, YANG Z H, PAN S L. Enhancing optical anisotropy of crystals by optimizing bonding electron distribution in anionic groups[J]. Chemical Communications, 2017, 53(19): 2818-2821.
DOI URL |
| [46] |
SILVI B, SAVIN A. Classification of chemical bonds based on topological analysis of electron localization functions[J]. Nature, 1994, 371(6499): 683-686.
DOI |
| [47] |
WANG A Y, ZHOU S H, RAN M Y, et al. Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy[J]. Chinese Chemical Letters, 2024, 35(10): 109377.
DOI |
| [48] |
LIU J T, ABLEZ A, HU Q Q, et al. Alkali halide flux synthesis, crystal structure, and photoelectric response of quaternary thiosilicates K3Ga3Si7S20 and K2ZnSi3S8 [J]. CrystEngComm, 2024, 26(5): 691-696.
DOI URL |
| [49] |
CHEN J D, LIN C S, YANG S D, et al. Cd4SiQ6 (Q = S, Se): ternary infrared nonlinear optical materials with mixed functional building motifs[J]. Crystal Growth & Design, 2020, 20(4): 2489-2496.
DOI URL |
| [50] |
HU X N, XIONG L, WU L M. Six new members of the A2MIIMIV3Q8 family and their structural relationship[J]. Crystal Growth & Design, 2018, 18(5): 3124-3131.
DOI URL |
| [51] |
LIU B W, JIANG X M, PEI S M, et al. Balanced infrared nonlinear optical performance achieved by modulating the covalency and ionicity distributions in the electron localization function map[J]. Materials Horizons, 2021, 8(12): 3394-3398.
DOI URL |
| [52] |
MULKS F F. Hard and soft electrons and holes[J]. Chem, 2024, 10(9): 2724-2744.
DOI URL |
| [53] | 陈创天. 氧化物型晶体电光和非线性光学效应的阴离子配位基团理论[J]. 中国科学, 1977, 7(6): 579-593. |
| CHEN C T. Anion coordination group theory of electro-optic and nonlinear optical effects of oxide crystals[J]. Science in China, Ser A, 1977, 7(6): 579-593 (in Chinese). | |
| [54] |
STEGMAIER S, FÄSSLER T F. A bronze matryoshka: the discrete intermetalloid cluster [Sn@Cu12@Sn20]12- in the ternary phases A12Cu12Sn21 (A=Na, K)[J]. Journal of the American Chemical Society, 2011, 133(49): 19758-19768.
DOI URL |
| [1] | 冷昊宁, 孙霄霄, 穆柏旭, 宁丽娜. KNbO3高压下相变行为的第一性原理研究[J]. 人工晶体学报, 2025, 54(9): 1584-1592. |
| [2] | 韩懿博, 吉旭, 井群, 朱宣恺, 艾孜再姆·吾布力塔依尔, 赵文豪, 曹鑫佳. YPO4双折射率增益机制和晶格工程调控策略研究[J]. 人工晶体学报, 2025, 54(9): 1547-1557. |
| [3] | 秦纪龙, 李向远, 张璐璐, 刘建新, 李瑞. 非化学计量比氧化钨(WO3-x)催化甲烷氧化制甲醇反应的第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1441-1453. |
| [4] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [5] | 莫秋燕, 吴家隐, 荆涛. Pt修饰AlN单层对C2H6和C6H6吸附和气敏特性的第一性原理研究[J]. 人工晶体学报, 2025, 54(6): 1050-1060. |
| [6] | 刘劲松, 沈露, 任龙军, 黄希忠. 通过缺陷和应变工程控制Janus MoSSe的析氢反应[J]. 人工晶体学报, 2025, 54(6): 1034-1041. |
| [7] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [8] | 崔健, 和志豪, 丁家福, 王云杰, 万俯宏, 李佳郡, 苏欣. 含d10电子构型钨酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2025, 54(5): 841-849. |
| [9] | 解忧, 肖潇飒, 姜宁宁, 张涛. 二维BC6N/BN横向异质结的电学输运性质研究[J]. 人工晶体学报, 2025, 54(5): 825-831. |
| [10] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [11] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [12] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| [13] | 郭满意, 吴佳兴, 杨帆, 王超, 王艳杰, 迟耀丹, 杨小天. ε-Ga2O3晶体及其本征缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(2): 212-218. |
| [14] | 陆心宜, 王睿曦, 李梦月, 吴立明, 陈玲. NaCeF(SO4)2:新型氟化铈硫酸盐合成结构及其粉末非线性光学性能研究[J]. 人工晶体学报, 2025, 54(10): 1772-1779. |
| [15] | 林可, 张雅馨, 吴闻杰, 李琳, 林长浪, 曾黄军, 聂海宇, 李志强, 张戈, 李真, 张沛雄, 陈玮冬, 陈振强. 掺镱混晶的光谱增益带宽调控与激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1849-1857. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS