
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1696-1713.DOI: 10.16553/j.cnki.issn1000-985x.2025.0146
陈伟(
), 王城强, 陈养国, 章睿, 党羽, 陈江旭, 陈秋华, 张星(
)
收稿日期:2025-07-14
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
张星,硕士,高级工程师。E-mail:freeman.zhang@castech.com
作者简介:陈伟(1977—),男,福建省人,硕士,高级工程师。E-mail:chenwei@castech.com
CHEN Wei(
), WANG Chengqiang, CHEN Yangguo, ZHANG Rui, DANG Yu, CHEN Jiangxu, CHEN Qiuhua, ZHANG Xing(
)
Received:2025-07-14
Online:2025-10-20
Published:2025-11-11
摘要: 磁光隔离器作为激光系统中的关键器件,核心功能依赖于磁光晶体的法拉第效应,能够有效隔离反射光,提升激光系统的稳定性。本文综述了磁光材料的发展历程,重点介绍了稀土石榴石晶体(如TGG、TAG、TSAG、YIG)和氟化物晶体(如CeF3、KTb3F10)的磁光性能、生长技术及应用现状。TGG晶体是目前应用最广泛的磁光材料,但其磁光性能在高功率激光器中逐渐面临瓶颈;TAG和TSAG晶体性能更优,Verdet常数要高于TGG晶体30%以上,但生长难度较大;YIG晶体在中远红外波段表现优异,在1 064 nm处的Verdet常数可达-515.82 rad/(T·m),但尺寸限制仍需突破。氟化物晶体(如CeF3和KTF)凭借高透过率和低光学吸收成为新兴研究方向,尤其在紫外和可见光波段潜力显著,在紫外波段透过率能达到85%。此外,本文探讨了磁光隔离器的工作原理、发展历程及研究进展,并展望了未来高性能磁光材料及器件的应用前景。
中图分类号:
陈伟, 王城强, 陈养国, 章睿, 党羽, 陈江旭, 陈秋华, 张星. 磁光晶体及器件研究进展[J]. 人工晶体学报, 2025, 54(10): 1696-1713.
CHEN Wei, WANG Chengqiang, CHEN Yangguo, ZHANG Rui, DANG Yu, CHEN Jiangxu, CHEN Qiuhua, ZHANG Xing. Research Progress of Magneto-Optical Crystals and Devices[J]. Journal of Synthetic Crystals, 2025, 54(10): 1696-1713.
| 分子式 | 晶系 | 空间群 | 密度 | 生长方法 | 透光范围 | 热导率 | 热膨胀系数 |
|---|---|---|---|---|---|---|---|
| CeF3 | 三方 | P3c1 | 6.16 g/cm3 | 提拉法、坩埚下降法 | 282~12 000 nm | (2.51±0.12) W·m-1·K-1 (c轴) | 16.5×10-6 (c轴) |
表1 室温条件下CeF3晶体的基本特性[71]
Table 1 Basic characteristics of CeF3 crystals under room temperature[71]
| 分子式 | 晶系 | 空间群 | 密度 | 生长方法 | 透光范围 | 热导率 | 热膨胀系数 |
|---|---|---|---|---|---|---|---|
| CeF3 | 三方 | P3c1 | 6.16 g/cm3 | 提拉法、坩埚下降法 | 282~12 000 nm | (2.51±0.12) W·m-1·K-1 (c轴) | 16.5×10-6 (c轴) |
图12 CeF3晶体在可见及红外波段的透过光谱(a)及折射率(b)变化[71,73]
Fig.12 Transmission spectra (a) and refractive index (b) variations of CeF3 crystals in the visible-infrared wavelength ranges[71,73]
图13 CeF3与TGG晶体的Verdet常数色散和紫外-可见透射光谱(a),以及品质因数(FOM)(b)比较[73?74]
Fig.13 Comparison of Verdet constant dispersion and ultraviolet-visible transmission spectra (a) between CeF3 and TGG crystals, as well as figure of merit (FOM) (b)[73?74]
图14 CeF3和TGG晶体的热透镜强度随激光功率P的变化关系(a),以及电流I与CeF3晶体中c轴与激光传播方向之间夹角ρ的关系(b)[75?76]
Fig.14 Relationship between the thermal lensing strength of CeF3 and TGG crystals and the laser power P (a), and relationship between the current I and the angle ρ between the c-axis of the CeF3 crystal and the direction of laser propagation (b)[75?76]
| 分子式 | 密度 | 透光范围 | Verdet常数 | 折射率 | 吸收 |
|---|---|---|---|---|---|
| KTb3F10 | 5.86 g/cm3 | 400~1 500 nm | 36 rad/(T·m)@1 064 nm | 1.5@1 064 nm | 0.02%/cm@1 064 nm |
表2 KTF晶体的基本特性[79]
Table 2 Basic characteristics of KTF crystals[79]
| 分子式 | 密度 | 透光范围 | Verdet常数 | 折射率 | 吸收 |
|---|---|---|---|---|---|
| KTb3F10 | 5.86 g/cm3 | 400~1 500 nm | 36 rad/(T·m)@1 064 nm | 1.5@1 064 nm | 0.02%/cm@1 064 nm |
| λ/nm | T/K | Verdet constant/(rad·T-1·m-1) | |||
|---|---|---|---|---|---|
| Vojna[ | Zelmon[ | Weber[ | Jalali[ | ||
| 632.7 | 295 | -113.4±2.7 | -114.9 | -112 | |
| 75 | -455.7±10.7 | ||||
| 1 062 | 295 | -32.7±0.9 | -28.2 | -33 | -34 |
| 75 | -143.3±3.4 | ||||
表3 KTF晶体常见激光波长附近的Verdet常数
Table 3 Verdet constant near the common laser wavelength of KTF crystals
| λ/nm | T/K | Verdet constant/(rad·T-1·m-1) | |||
|---|---|---|---|---|---|
| Vojna[ | Zelmon[ | Weber[ | Jalali[ | ||
| 632.7 | 295 | -113.4±2.7 | -114.9 | -112 | |
| 75 | -455.7±10.7 | ||||
| 1 062 | 295 | -32.7±0.9 | -28.2 | -33 | -34 |
| 75 | -143.3±3.4 | ||||
| 研究单位 | 平均功率 | 通光孔径 | 透过率 | 1 064 nm峰值隔离度 |
|---|---|---|---|---|
| 美国EOT | 400 W | 45 mm | >95% | >33 dB |
| 美国IPO | 400 W | 70 mm | >96% | >33 dB |
| 德国Qioptiq | >50 W | 8 mm | >90% | >38 dB |
| 美国Thorlabs | 200 W | 9 mm | >92% | >33 dB |
表4 块状分立元件式高功率磁光隔离器国外相应研究参数进展
Table 4 Progress of corresponding research parameters for bulk discrete component high-power magneto-optical isolators from abroad
| 研究单位 | 平均功率 | 通光孔径 | 透过率 | 1 064 nm峰值隔离度 |
|---|---|---|---|---|
| 美国EOT | 400 W | 45 mm | >95% | >33 dB |
| 美国IPO | 400 W | 70 mm | >96% | >33 dB |
| 德国Qioptiq | >50 W | 8 mm | >90% | >38 dB |
| 美国Thorlabs | 200 W | 9 mm | >92% | >33 dB |
| 研究单位 | 平均功率/W | 通光孔径/mm | 透过率/% | 1 064 nm峰值隔离度 |
|---|---|---|---|---|
| 福晶科技 | 100 | 20 | >95 | >33 dB |
| 海创光电 | 100 | 5 | >93 | >33 dB |
| 光越科技 | 100 | 5 | >90 | >30 dB |
| 光库科技 | 100 | 5 | >95 | >35 dB |
表5 国内磁光隔离器研究进展
Table 5 Research progress of magnetic optical isolators in China
| 研究单位 | 平均功率/W | 通光孔径/mm | 透过率/% | 1 064 nm峰值隔离度 |
|---|---|---|---|---|
| 福晶科技 | 100 | 20 | >95 | >33 dB |
| 海创光电 | 100 | 5 | >93 | >33 dB |
| 光越科技 | 100 | 5 | >90 | >30 dB |
| 光库科技 | 100 | 5 | >95 | >35 dB |
图19 常规在线隔离器(左)与TAP型在线隔离器(右)外观示意图
Fig.19 Schematic diagram of the appearance of conventional online isolator (left) and TAP type online isolator (right)
| [1] | 戴佳卫. 铽铝石榴石(Tb3Al5O12)基磁光透明陶瓷的制备与性能研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2018. |
| DAI J W. Fabrication and properties of terbium aluminum garnet(Tb3Al5O12) based magneto-optical transparent ceramics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018 (in Chinese). | |
| [2] |
LI J, DAI J W, PAN Y B. Research progress on magneto-optical transparent ceramics[J]. Journal of Inorganic Materials, 2018, 33(1): 1.
DOI |
| [3] | 张昊天, 窦仁勤, 张庆礼, 等. 磁光晶体的研究进展及应用[J]. 人工晶体学报, 2020, 49(2): 346-352+357. |
| ZHANG H T, DOU R Q, ZHANG Q L, et al. Research progress and application of magneto-optical crystals[J]. Journal of Synthetic Crystals, 2020, 49(2): 346-352+357 (in Chinese). | |
| [4] | 吴 振, 张中晗, 张 振, 等. 氟化物磁光晶体的研究进展与应用[J]. 量子电子学报, 2024, 41(2): 194-206. |
| WU Z, ZHANG Z H, ZHANG Z, et al. Research progress and applications of fluoride magneto-optical crystals[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 194-206 (in Chinese). | |
| [5] |
DAI J W, CAO M Q, KOU H M, et al. Fabrication and properties of transparent Tb∶YAG fluorescent ceramics with different doping concentrations[J]. Ceramics International, 2016, 42(12): 13812-13818.
DOI URL |
| [6] |
LIU B L, LI J, YAVETSKIY R, et al. Fabrication of YAG transparent ceramics using carbonate precipitated yttria powder[J]. Journal of the European Ceramic Society, 2015, 35(8): 2379-2390.
DOI URL |
| [7] | 殷海荣, 章春香, 刘立营, 等. 稀土法拉第磁光玻璃研究新进展[J]. 材料导报, 2008, 22(3): 7-10+23. |
| YIN H R, ZHANG C X, LIU L Y, et al. New progress in research on faraday magneto-optical glass containing rare-earth[J]. Materials Review, 2008, 22(3): 7-10+23 (in Chinese). | |
| [8] |
RUAN Y L, JARVIS R A, RODE A V, et al. Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices[J]. Optics Communications, 2005, 252(1/2/3): 39-45.
DOI URL |
| [9] | 孙敦陆, 张连瀚, 杭 寅. 磁光晶体的实际应用及研究新进展[J]. 自然杂志, 2002, 24(2): 91-94. |
| SUN D L, ZHANG L H, HANG Y. Practical application and the new progress of magnetic-optical crystal[J]. Nature Magazine, 2002, 24(2): 91-94 (in Chinese). | |
| [10] |
MIRONOV E A, PALASHOV O V. Faraday isolator based on TSAG crystal for high power lasers[J]. Optics Express, 2014, 22(19): 23226-23230.
DOI PMID |
| [11] |
KHAZANOV E A, KULAGIN O V, YOSHIDA S, et al. Investigation of self-induced depolarization of laser radiation in terbium gallium garnet[J]. IEEE Journal of Quantum Electronics, 1999, 35(8): 1116-1122.
DOI URL |
| [12] |
KAMINSKII A A, EICHLER H J, REICHE P, et al. SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers[J]. Laser Physics Letters, 2005, 2(10): 489-492.
DOI |
| [13] |
CHEN Z, YANG L, WANG X Y, et al. Highly transparent terbium gallium garnet crystal fabricated by the floating zone method for visible-infrared optical isolators[J]. Optical Materials, 2015, 46: 12-15.
DOI URL |
| [14] |
ZHUANG N F, SONG C G, GUO L W, et al. Growth of terbium gallium garnet (TGG) magneto-optic crystals by edge-defined film-fed growth method[J]. Journal of Crystal Growth, 2013, 381: 27-32.
DOI URL |
| [15] |
GANSCHOW S, KLIMM D, REICHE P, et al. On the crystallization of terbium aluminium garnet[J]. Crystal Research and Technology, 1999, 34(5/6): 615-619.
DOI URL |
| [16] |
GANSCHOW S, KLIMM D, EPELBAUM B M, et al. Growth conditions and composition of terbium aluminum garnet single crystals grown by the micro pulling down technique[J]. Journal of Crystal Growth, 2001, 225(2/3/4): 454-457.
DOI URL |
| [17] |
PAWLAK D A, KAGAMITANI Y, YOSHIKAWA A, et al. Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method[J]. Journal of Crystal Growth, 2001, 226(2/3): 341-347.
DOI URL |
| [18] | SHI L J, GUO L W, WEI Q K, et al. Properties characterization of Tb3Sc2Al3O12(TSAG) crystals grown by edge-defined film-fed growth method[J]. Journal of Synthetic Crystals, 2013, 42(9): 1735-1756. |
| [19] |
MOLINA P, VASYLIEV V, VÍLLORA E G, et al. CeF3 and PrF3 as UV-visible faraday rotators[J]. Optics Express, 2011, 19(12): 11786-11791.
DOI URL |
| [20] | 中国科学院上海硅酸盐研究所. 氟化物单晶体的热控布里奇曼法单晶生长装置与方法: 中国, CN201510156562.X[P]. 2016-11-23. |
| Shanghai Institute of Ceramics, Chinese Academy of Sciences. Thermal control Bridgman method single crystal growth device and method for fluoride single crystals: China, CN201510156562.X[P]. 2016-11-23 (in Chinese). | |
| [21] |
WEBER M J, MORGRET R, LEUNG S Y, et al. Magneto‐optical properties of KTb3F10 and LiTbF4 crystals[J]. Journal of Applied Physics, 1978, 49(6): 3464-3469.
DOI URL |
| [22] |
FENG W X, HANKE J P, ZHOU X D, et al. Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets[J]. Nature Communications, 2020, 11(1): 118.
DOI PMID |
| [23] |
ATATÜRE M, DREISER, BADOLATO A, et al. Observation of Faraday rotation from a single confined spin[J]. Nature Physics, 2007, 3: 101-106.
DOI |
| [24] | 刘公强. 磁光效应和磁光器件[J]. 科学, 1998, 50(5): 26-29. |
|
LIU G Q. 6 magnetooptic effect sad magnetooptic devices[J]. Science, 1998, 50(5): 2+26-2+29 (in Chinese).
DOI URL |
|
| [25] |
PEDROSO C B, MUNIN E, BALBIN VILLAVERDE A, et al. Magneto-optical rotation of heavy-metal oxide glasses[J]. Journal of Non-Crystalline Solids, 1998, 231(1/2): 134-142.
DOI URL |
| [26] |
YASUHARA R, TOKITA S, KAWANAKA J, et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics[J]. Optics Express, 2007, 15(18): 11255-11261.
PMID |
| [27] | HOLM U, SOHLSTRÖM H, SVANTESSON K. Transmission loss compensation for Faraday effect fibre optic sensors[J]. Sensors and Actuators A: Physical, 1995, 47(1/2/3): 487-490. |
| [28] |
PYE L D, CHERUKURI S C, MANSFIELD J, et al. The faraday effect in some non-crystalline fluorides[J]. Journal of Non-Crystalline Solids, 1983, 56(1/2/3): 99-104.
DOI URL |
| [29] |
ZHELEZNOV D S, ZELENOGORSKII V V, KATIN E V, et al. Cryogenic faraday isolator[J]. Quantum Electronics, 2010, 40(3): 276-281.
DOI URL |
| [30] | PETROVSKII G T, ZARUBINA T V, EDELMAN I S, et al. Temperature-dependence and dispersion of the Faraday-effect in glasses based on terbium and cerium oxides[J]. Soviet Journal of Optical Technology, 1987, 54(11): 680-682. |
| [31] |
ZEPER W B, GREIDANUS F J A M, CARCIA P F, et al. Perpendicular magnetic anisotropy and magneto‐optical Kerr effect of vapor‐deposited Co/Pt‐layered structures[J]. Journal of Applied Physics, 1989, 65(12): 4971-4975.
DOI URL |
| [32] | SHOJI Y, MIZUMOTO T, YOKOI H, et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding[J]. Applied Physics Letters, 2008, 92(7): 071117. |
| [33] |
LIU L F, ZHANG Y, ZHANG S C, et al. Magnetic-free unidirectional polarization rotation and free-space optical isolators and circulators[J]. Applied Physics Letters, 2022, 121(26): 261102.
DOI URL |
| [34] |
VOJNA D, SLEZÁK O, LUCIANETTI A, et al. Verdet constant of magneto-active materials developed for high-power faraday devices[J]. Applied Sciences, 2019, 9(15): 3160.
DOI URL |
| [35] | 李晓英. 铽基石榴石磁光透明陶瓷的制备与性能研究[D]. 镇江: 江苏大学, 2019. |
| LI X Y. Preparation and properties of terbium-based garnet magneto-optical transparent ceramics[D]. Zhenjiang: Jiangsu University, 2019 (in Chinese). | |
| [36] | 刘 琳, 俞育德. 铽镓石榴石晶体的生长和鉴定[J]. 人工晶体, 1985, 14( 增刊1): 27. |
| LIU L, YU Y D. Growth and identification of terbium gallium garnet crystal[J]. Journal of Synthetic Crystals, 1985, 14(supplement 1): 27 (in Chinese). | |
| [37] | 郝冠男. 铽镓石榴石晶体磁光性能研究[D]. 长春: 长春理工大学, 2016. |
| HAO G N. Study on magneto-optical properties of terbium gallium garnet crystal[D]. Changchun: Changchun University of Science and Technology, 2016 (in Chinese). | |
| [38] | 庄乃锋, 汪荣峰, 李宏哲, 等. 导模提拉法生长铽镓石榴石(TGG)磁光晶体[C]// 中国晶体学会第四届全国会员代表大会暨学术会议学术论文摘要集, 2008. |
| ZHUANG N F, WANG R F, LI H Z, et al. Growth of Terbium Gallium Garnet (TGG) Magneto-optical Crystal by Guided Mode Pulling Method[C]// Abstract of Academic Papers from the Fourth National Congress and Conference of the Chinese Crystallographic Society, 2008 (in Chinese). | |
| [39] | 陈建彬, 林 羽, 李国辉, 等. 大尺寸优质TGG晶体的自动提拉法生长[J]. 人工晶体学报, 2014, 43(8): 1891-1894. |
| CHEN J B, LIN Y, LI G H, et al. Growth of large-size and high-quality TGG crystal by automatic Czochralski method[J]. Journal of Synthetic Crystals, 2014, 43(8): 1891-1894 (in Chinese). | |
| [40] | 龙 勇, 徐 扬, 石自彬, 等. TGG晶体偏心生长研究[J]. 压电与声光, 2015, 37(2): 277-279. |
| LONG Y, XU Y, SHI Z B, et al. Study on spiral growth of TGG crystal[J]. Piezoelectrics & Acoustooptics, 2015, 37(2): 277-279 (in Chinese). | |
| [41] | 龙 勇, 石自彬, 丁雨憧, 等. 大尺寸TGG晶体生长与性能研究[J]. 压电与声光, 2016, 38(3): 433-436. |
| LONG Y, SHI Z B, DING Y C, et al. Growth and characterization of large-size terbium gallium garnet single crystal[J]. Piezoelectrics & Acoustooptics, 2016, 38(3): 433-436 (in Chinese). | |
| [42] |
JIN W Z, DING J X, GUO L, et al. Growth and performance research of Tb3Ga5O12 magneto-optical crystal[J]. Journal of Crystal Growth, 2018, 484: 17-20.
DOI URL |
| [43] |
ZHANG H T, GAO Y X, HUANG C B, et al. Electronic structure, optical dispersion and luminescence properties of terbium gallium garnet crystal[J]. CrystEngComm, 2022, 24(4): 877-885.
DOI URL |
| [44] |
CHEN Z, YANG L, WANG X Y, et al. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal[J]. Optics Letters, 2016, 41(11): 2580-2583.
DOI PMID |
| [45] |
CHEN Z, YANG L, HANG Y, et al. Improving characteristic of Faraday effect based on the Tm3+ doped terbium gallium garnet single crystal[J]. Journal of Alloys and Compounds, 2016, 661: 62-65.
DOI URL |
| [46] |
ZHAO G, XU M, ZHAO C C, et al. Improved performance of Faraday effect based on Pr3+, Ce3+ Co-doped terbium gallium garnet crystal[J]. Optics Communications, 2022, 506: 127587.
DOI URL |
| [47] | 郝元凯. 高功率铽钪铝石榴石磁光晶体的组分调控及性能研究[D]. 济南: 山东大学, 2024. |
| HAO Y K. Study on composition control and properties of high power terbium scandium aluminum garnet magneto-optical crystal[D]. Jinan: Shandong University, 2024 (in Chinese). | |
| [48] |
GEHO M, SEKIJIMA T, FUJII T. Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine[J]. Journal of Crystal Growth, 2004, 267(1/2): 188-193.
DOI URL |
| [49] |
YANG X D, LI C, ZHENG D Y, et al. Growth and properties of neodymium-doped terbium aluminum garnet crystal[J]. Russian Journal of Physical Chemistry A, 2015, 89(10): 1781-1784.
DOI URL |
| [50] |
MAN P W, MA F K, XIE T, et al. Magneto-optical property of terbium-lutetium-aluminum garnet crystals[J]. Optical Materials, 2017, 66: 207-210.
DOI URL |
| [51] | 吴以恒. 铽钪铝石榴石(Tb3Sc2Al3O12)基磁光透明陶瓷的制备与性能研究[D]. 北京: 中国科学院大学, 2023. |
| WU Y H. Preparation and properties of terbium scandium aluminum garnet Tb3Sc2Al3O12 based magneto-optical transparent ceramics[D]. University of Chinese Academy of Sciences, 2023 (in Chinese). | |
| [52] | 施俐君, 郭莉薇, 魏庆科, 等. 导模提拉法生长Tb3Sc2Al3O12(TSAG)晶体及性质表征[J]. 人工晶体学报, 2013, 42(9): 1735-1740+1756. |
| SHI L J, GUO L W, WEI Q K, et al. Properties characterization of Tb3Sc2Al3O12(TSAG) crystals grown by edge-defined film-fed growth method[J]. Journal of Synthetic Crystals, 2013, 42(9): 1735-1740+1756 (in Chinese). | |
| [53] |
SNETKOV I, PALASHOV O. Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field[J]. Optical Materials, 2015, 42: 293-297.
DOI URL |
| [54] |
DING S J, ZHANG Q L, LIU W P, et al. Crystal growth, defects, mechanical, thermal and optical properties of Tb3Sc2Al3O12 magneto-optical crystal[J]. Journal of Crystal Growth, 2018, 483: 110-114.
DOI URL |
| [55] |
DOU R Q, ZHANG H T, ZHANG Q L, et al. Growth and properties of TSAG and TSLAG magneto-optical crystals with large size[J]. Optical Materials, 2019, 96: 109272.
DOI URL |
| [56] | 马 健. 厘米尺寸YIG晶体生长研究[D]. 上海: 上海应用技术大学, 2022. |
| MA J. Study on the growth of YIG crystal with centimeter size[D]. Shanghai: Shanghai Institute of Technology, 2022 (in Chinese). | |
| [57] | 赵一阳. YIG磁光晶体生长与性能研究[D]. 长春: 长春理工大学, 2016. |
| ZHAO Y Y. Study on growth and properties of YIG magneto-optical crystal[D]. Changchun: Changchun University of Science and Technology, 2016 (in Chinese). | |
| [58] |
DILLON J F. Optical properties of several ferrimagnetic garnets[J]. Journal of Applied Physics, 1958, 29(3): 539-541.
DOI URL |
| [59] |
ZHUANG N F, CHEN W B, SHI L J, et al. A new technique to grow incongruent melting Ga∶YIG crystals: the edge-defined film-fed growth method[J]. Journal of Applied Crystallography, 2013, 46(3): 746-751.
DOI URL |
| [60] | JIN W Z, GAI L Y, LI C, et al. Crystal growth and characterization of Ce x Y3- x Fe5O12 single crystal by optical floating zone method[J]. Physica B: Condensed Matter, 2020, 588: 412168. |
| [61] | 杨晓明, 何超, 苏榕冰, 等. 高功率光隔离器用钇铁石榴石晶体生长及其缺陷抑制[C]. 中国稀土学会. 中国稀土学会第五届青年学术会议摘要集. 中国科学院新疆理化技术研究所, 2024: 189. |
| YANG X M, HE C, SU R B, et al. Growth and Defect Suppression of Yttrium Iron Garnet Crystals for High-power Optical Isolators[C]. Chinese Society of Rare Earths. Abstract Collection of the Fifth Youth Academic Conference of the Chinese Society of Rare Earths. Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; 2024: 189 (in Chinese). | |
| [62] |
ALLAIN J L, COUCHAUD M, FERRAND B, et al. Crystal growth and scintillation properties of CeF3 [J]. MRS Online Proceedings Library, 1994, 348(1): 105-110.
DOI URL |
| [63] |
SHIMAMURA K, Vı́LLORA E G, NAKAKITA S, et al. Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals[J]. Journal of Crystal Growth, 2004, 264(1/2/3): 208-215.
DOI URL |
| [64] | ANDERSON D F. Cerium fluoride: a scintillator for high-rate applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 287(3): 606-612. |
| [65] | ANDERSON S, AUFFRAY E, AZIZ T, et al. Further results on cerium fluoride crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 332(3): 373-394. |
| [66] | ASEEV A A, DEVITSIN E G, KOZLOV V A, et al. CeF3(Ba) radiation hard scintillator for electromagnetic calorimeters[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 313(3): 340-344. |
| [67] | AUFFRAY E, BACCARO S, BECKERS T, et al. Extensive studies on CeF3 crystals, a good candidate for electromagnetic calorimetry at future accelerators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 383(2/3): 367-390. |
| [68] | GAO M, FENG X Q, HU G Q, et al. Annealing and radiation damage effects in CeF3 crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 348(1): 163-166. |
| [69] | INAGAKI T, YOSHIMURA Y, KANDA Y, et al. Development of CeF3 crystal for high-energy electromagnetic calorimetry[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 443(1): 126-135. |
| [70] | 中国科学院上海硅酸盐研究所. 220毫米长的大尺寸氟化铈晶体的生长技术: CN199410012080.4[P]. 1995-09-27. |
| Shanghai Institute of Ceramics, Chinese Academy of Sciences. Growth Technique for Large Size Cerium Fluoride Crystals of 220 Millimeters in Length: China, CN199410012080.4[P]. 1995-09-27 (in Chinese). | |
| [71] |
VÍLLORA E G, YUAN D S, SHIMAMURA K. CeF3 single crystals for UV-VIS-IR optical isolators[J]. International Journal of Applied Ceramic Technology, 2023, 20(4): 2047-2054.
DOI URL |
| [72] |
KARIMOV D N, LISOVENKO D S, IVANOVA A G, et al. Bridgman growth and physical properties anisotropy of CeF3 single crystals[J]. Crystals, 2021, 11(7): 793.
DOI URL |
| [73] |
VASYLIEV V, VILLORA E G, NAKAMURA M, et al. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3 [J]. Optics Express, 2012, 20(13): 14460-14470.
DOI URL |
| [74] |
VÍLLORA E G, SHIMAMURA K, PLAZA G R. Ultraviolet-visible optical isolators based on CeF3 Faraday rotator[J]. Journal of Applied Physics, 2015, 117(23): 233101.
DOI URL |
| [75] |
MIRONOV E A, STAROBOR A V, SNETKOV I L, et al. Thermo-optical and magneto-optical characteristics of CeF3 crystal[J]. Optical Materials, 2017, 69: 196-201.
DOI URL |
| [76] |
STAROBOR A, MIRONOV E, PALASHOV O. High-power Faraday isolator on a uniaxial CeF3 crystal[J]. Optics Letters, 2019, 44(6): 1297-1299.
DOI URL |
| [77] |
穆宏赫, 王鹏飞, 施宇峰, 等. 热交换坩埚下降法制备大尺寸氟化铈晶体的热场设计与优化[J]. 无机材料学报, 2023, 38(3): 288-295.
DOI |
|
MU H H, WANG P F, SHI Y F, et al. Large-size CeF3 crystal growth by heat exchanger-bridgman method: thermal field design and optimization[J]. Journal of Inorganic Materials, 2023, 38(3): 288-295 (in Chinese).
DOI URL |
|
| [78] |
WEBER M J, MORGRET R, LEUNG S Y, et al. Magneto‐optical properties of KTb3F10 and LiTbF4 crystals[J]. Journal of Applied Physics, 1978, 49(6): 3464-3469.
DOI URL |
| [79] |
STEVENS K T, SCHLICHTING W, FOUNDOS G, et al. Promising materials for high power laser isolators[J]. Laser Technik Journal, 2016, 13(3): 18-21.
DOI URL |
| [80] | STEVENS K T, FOUNDOS G, PAYNE A, et al. Commercializing potassium terbium fluoride, KTF (KTb3F10) faraday crystals for high laser power optical isolator applications[C]// Optifab 2017. October 16-19, 2017. Rochester, USA. SPIE, 2017. |
| [81] |
JALALI A A, ROGERS E, STEVENS K. Characterization and extinction measurement of potassium terbium fluoride single crystal for high laser power applications[J]. Optics Letters, 2017, 42(5): 899.
DOI PMID |
| [82] | SNETKOV I L. Features of thermally induced depolarization in magneto-active media with negative optical anisotropy parameter[J]. IEEE Journal of Quantum Electronics, 2018, 54(2): 1-8. |
| [83] | ZELMON D E, FOUNDOS G, STEVENS K T. Magneto-optical properties of potassium terbium fluoride[C]// Novel In-Plane Semiconductor Lasers XVII. January 27-February 1, 2018. San Francisco, USA. SPIE, 2018. |
| [84] |
STAROBOR A V, MIRONOV E A, PALASHOV O V. Thermal lens in magneto-active fluoride crystals[J]. Optical Materials, 2019, 98: 109469.
DOI URL |
| [85] |
VOJNA D, DUDA M, YASUHARA R, et al. Verdet constant of potassium terbium fluoride crystal as a function of wavelength and temperature[J]. Optics Letters, 2020, 45(7): 1683-1686.
DOI PMID |
| [86] |
KARIMOV D N, BUCHINSKAYA I I, ARKHAROVA N A, et al. Growth peculiarities and properties of KR3F10 (R=Y, Tb) single crystals[J]. Crystals, 2021, 11(3): 285.
DOI URL |
| [87] | 王吉明, 吴福全, 封太忠, 等. 磁光晶体Bi-YIG的磁致退偏效应[J]. 光学技术, 2004, 30(2): 212-214. |
| WANG J M, WU F Q, FENG T Z, et al. Depolarization effect of magneto-optic crystal Bi-YIG in adjustable magnetic field[J]. Optical Technique, 2004, 30(2): 212-214 (in Chinese). | |
| [88] | 王勇, 高新睿, 于庆华, 等. 多晶钇铁石榴石(YIG)磁光材料的制备研究[C]. 中国机械工程学会热处理分会. 国际材料科学与工程学术研讨会论文集(上册). 济南大学, 2005:276-279. |
| WANG Y, GAO X R, YU Q H, et al. Study on preparation of polycrystalline yttrium iron garnet (YIG) magneto-optical materials[C]. Proceedings of the International Symposium on Materials Science and Engineering (Volume I), hosted by the Heat Treatment Society of China Mechanical Engineering Society. University of Jinan, 2005: 276-279 (in Chinese). | |
| [89] | 上海应用技术学院. 一种稀土铁氧体磁光晶体生长方法: 200910048392.8[P]. 2011-06-29. |
| Shanghai Institute of Technology. Method for growing a rare earth ferrite magneto-optical crystal: China, CN200910048392.8[P]. 2011-06-29 (in Chinese). | |
| [90] |
LIU S S, BURGOS R, ZHANG E Z, et al. Room-temperature nonlinear transport and microwave rectification in antiferromagnetic MnBi2Te4 films[J]. Communications Physics, 2024, 7: 413.
DOI |
| [91] | 满沛文. 铽基石榴石结构磁光晶体生长及磁光性能研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2017. |
| MAN P W. Growth and magneto-optical properties of terbium-based garnet magneto-optical crystals[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2017 (in Chinese). | |
| [92] | 房旭龙, 杨青慧, 张怀武. 磁光材料及其在磁光开关中的应用[J]. 磁性材料及器件, 2013, 44(1): 68-72. |
| FANG X L, YANG Q H, ZHANG H W. Magneto-optical materials and their applications in magneto-optical switch[J]. Journal of Magnetic Materials and Devices, 2013, 44(1): 68-72 (in Chinese). | |
| [93] | 武安华, 申 慧, 徐家跃, 等. 新型磁光晶体YFeO3的生长与性能[J]. 磁性材料及器件, 2008, 39(5): 1-3. |
| WU A H, SHEN H, XU J Y, et al. Growth and property of new type magneto-optical YFeO3 crystal[J]. Journal of Magnetic Materials and Devices, 2008, 39(5): 1-3 (in Chinese). | |
| [94] | 李宏哲, 郭飞云, 汪荣峰, 等. Tb3Ga5- x Fe x O12晶体生长与磁光性能研究[C]. 中国化学会. 中国化学会第26届学术年会晶体工程分会场论文集. 福州大学化学化工学院, 2008: 41. |
| LI H Z, GUO F Y, WANG R F, et al. Study on crystal growth and magneto-optical properties of Tb3Ga5- x Fe x O12 [C]. Chinese Chemical Society. Proceedings of the 26th Chinese Chemical Society Academic Annual Meeting, Symposium on Crystal Engineering. College of Chemistry and Chemical Engineering, Fuzhou University, 2008: 41 (in Chinese). | |
| [95] | 曾维友, 谢 康, 蒋向东. 集成磁光隔离器的研究进展[J]. 激光与光电子学进展, 2006, 43(10): 47-52. |
| ZENG W Y, XIE K, JIANG X D. Research progress of integrated magneto-optic isolator[J]. Laser & Optoelectronics Progress, 2006, 43(10): 47-52 (in Chinese). |
| [1] | 李家和, 郑丽丽, 张辉, 李翔, 陈俊锋. 坩埚下降法生长氟化物晶体的热场对界面形状和生长速率的影响[J]. 人工晶体学报, 2025, 54(5): 772-783. |
| [2] | 邵梅方, 冯晋阳, 侯田江, 马晓. Ca2+/Mg2+/Zr4+不同化学计量比掺杂钆镓石榴石的性能[J]. 人工晶体学报, 2025, 54(4): 543-552. |
| [3] | 窦仁勤, 黄磊, 王小飞, 高进云, 刘文鹏, 罗建乔, 张庆礼. Nd∶TSAG晶体的生长及性能研究[J]. 人工晶体学报, 2024, 53(11): 1936-1943. |
| [4] | 李泓沅, 孙敦陆, 张会丽, 罗建乔, 权聪, 程毛杰. 含镓石榴石系列大晶格常数磁光衬底单晶研究进展[J]. 人工晶体学报, 2024, 53(10): 1657-1668. |
| [5] | 张榕贵, 陈腾波, 李来超, 李玉虎, 马艳丽. Dy、Lu掺杂对TSAG晶体磁光特性影响研究[J]. 人工晶体学报, 2023, 52(8): 1407-1412. |
| [6] | 王迪, 汤港, 张博, 王墉哲, 张中晗, 姜大朋, 寇华敏, 苏良碧. Nd,Y∶SrF2激光晶体的位错缺陷表征及分布研究[J]. 人工晶体学报, 2023, 52(7): 1208-1218. |
| [7] | 李兴旺, 杨宇, 芦佳, 董畅, 王永国, 徐学珍. 大尺寸氟化铽锂晶体生长与性能[J]. 人工晶体学报, 2023, 52(7): 1352-1356. |
| [8] | 赵鹏, 仵嘉玲, 夏聪, 马世会, 胡章贵. 激光浮区法生长TbYO3晶体[J]. 人工晶体学报, 2023, 52(10): 1758-1765. |
| [9] | 刘文娇, 张明记, 辛显辉, 郝元凯, 付秀伟, 张健, 贾志泰, 陶绪堂. 微下拉法生长Tb3AlxGa5-xO12磁光晶体及其性能表征[J]. 人工晶体学报, 2023, 52(1): 8-16. |
| [10] | 朱森寅, 张晗旭, 王先杰, 黄湛钧, 宋波. RIG型磁光薄膜的研究进展及应用[J]. 人工晶体学报, 2022, 51(9-10): 1659-1672. |
| [11] | 赵呈春, 张沛雄, 李善明, 房倩楠, 徐民, 陈振强, 杭寅. 稀土离子掺杂氟化物激光晶体研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1573-1587. |
| [12] | 王贝贝, 刘文鹏, 任浩, 张传成, 刘海莲, 邹勇, 丁守军. 钆钪铝石榴石单晶缺陷的微观形貌与成因研究[J]. 人工晶体学报, 2022, 51(11): 1851-1857. |
| [13] | 高腾, 邢锟, 吴功辉, 陈新, 胡晓琳, 庄乃锋. Bi26-x-yMxNyO40(M, N=Fe, Co, Gd)软铋矿薄膜的制备和强磁光效应[J]. 人工晶体学报, 2021, 50(9): 1655-1661. |
| [14] | 冯凯, 吕滨, 程红梅, 吴少凡, 王燕, 刘永兴. 基于磁光应用的TbO1.81和Tb2O3超细粉末的合成[J]. 人工晶体学报, 2021, 50(1): 80-87. |
| [15] | 张昊天, 窦仁勤, 张庆礼, 刘文鹏, 孙贵花, 罗建乔. 磁光晶体的研究进展及应用[J]. 人工晶体学报, 2020, 49(2): 346-352. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS