Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (5): 841-849.DOI: 10.16553/j.cnki.issn1000-985x.2024.0256
• Research Articles • Previous Articles Next Articles
CUI Jian1,2(), HE Zhihao1,2, DING Jiafu1,2, WANG Yunjie1,2, WAN Fuhong1,2, LI Jiajun1,2, SU Xin1,2(
)
Received:
2024-10-27
Online:
2025-05-15
Published:
2025-05-28
CLC Number:
CUI Jian, HE Zhihao, DING Jiafu, WANG Yunjie, WAN Fuhong, LI Jiajun, SU Xin. First-Principles Study on the Relationship Between Structure and Properties of Tungstate with d10 Electron Configuration[J]. Journal of Synthetic Crystals, 2025, 54(5): 841-849.
Compound | a/Å | b/Å | c/Å | β/(°) | b/c | Error/% | V/Å3 | |
---|---|---|---|---|---|---|---|---|
ZnWO4 | Before | 4.677 | 5.729 | 4.936 | 90.59 | 1.161 | 1.56 | 132.272 |
After | 4.857 | 5.909 | 5.010 | 90.54 | 1.179 | 143.837 | ||
CdWO4 | Before | 5.047 | 5.906 | 5.089 | 91.21 | 1.161 | 1.56 | 151.670 |
After | 5.113 | 6.032 | 5.116 | 90.99 | 1.179 | 157.766 | ||
HgWO4 | Before | 11.610 | 6.217 | 5.274 | 113.73 | 1.178 | 3.05 | 348.510 |
After | 11.045 | 6.303 | 5.191 | 111.06 | 1.214 | 337.324 |
Table 1 Lattice parameters of TMWO4 (TM=Zn, Cd, Hg) before and after geometry optimization
Compound | a/Å | b/Å | c/Å | β/(°) | b/c | Error/% | V/Å3 | |
---|---|---|---|---|---|---|---|---|
ZnWO4 | Before | 4.677 | 5.729 | 4.936 | 90.59 | 1.161 | 1.56 | 132.272 |
After | 4.857 | 5.909 | 5.010 | 90.54 | 1.179 | 143.837 | ||
CdWO4 | Before | 5.047 | 5.906 | 5.089 | 91.21 | 1.161 | 1.56 | 151.670 |
After | 5.113 | 6.032 | 5.116 | 90.99 | 1.179 | 157.766 | ||
HgWO4 | Before | 11.610 | 6.217 | 5.274 | 113.73 | 1.178 | 3.05 | 348.510 |
After | 11.045 | 6.303 | 5.191 | 111.06 | 1.214 | 337.324 |
Compound | Species | s | p | d | Total | Charge/e |
---|---|---|---|---|---|---|
ZnWO4 | Zn | 0.19 | 0.64 | 9.99 | 10.82 | 1.18 |
W | 0.45 | 0.22 | 3.77 | 4.44 | 1.56 | |
O | 1.86 | 4.86 | 0 | 6.72 | -0.72 | |
CdWO4 | Cd | 0.15 | 0.54 | 9.99 | 10.68 | 1.32 |
W | 0.44 | 0.26 | 3.78 | 4.48 | 1.52 | |
O | 1.87 | 4.88 | 0 | 6.75 | -0.75 | |
HgWO4 | Hg | 0.61 | 0.41 | 9.85 | 10.87 | 1.13 |
W | 0.39 | 0.25 | 3.83 | 4.47 | 1.53 | |
O | 1.86 | 4.92 | 0 | 6.78 | -0.78 |
Table 2 Mulliken charge population of TMWO4 (TM=Zn, Cd, Hg)
Compound | Species | s | p | d | Total | Charge/e |
---|---|---|---|---|---|---|
ZnWO4 | Zn | 0.19 | 0.64 | 9.99 | 10.82 | 1.18 |
W | 0.45 | 0.22 | 3.77 | 4.44 | 1.56 | |
O | 1.86 | 4.86 | 0 | 6.72 | -0.72 | |
CdWO4 | Cd | 0.15 | 0.54 | 9.99 | 10.68 | 1.32 |
W | 0.44 | 0.26 | 3.78 | 4.48 | 1.52 | |
O | 1.87 | 4.88 | 0 | 6.75 | -0.75 | |
HgWO4 | Hg | 0.61 | 0.41 | 9.85 | 10.87 | 1.13 |
W | 0.39 | 0.25 | 3.83 | 4.47 | 1.53 | |
O | 1.86 | 4.92 | 0 | 6.78 | -0.78 |
Compound | Bond | Population | Length/Å |
---|---|---|---|
ZnWO4 | W—O1 | 0.86 | 1.82 |
W—O2 | 0.33 | 2.17 | |
Zn—O1 | 0.28 | 2.12 | |
Zn—O2 | 0.10 | 2.32 | |
CdWO4 | W—O1 | 0.87 | 1.82 |
W—O2 | 0.32 | 2.18 | |
Cd—O1 | 0.23 | 2.25 | |
Cd—O2 | 0.09 | 2.30 | |
HgWO4 | W—O1 | 0.99 | 1.78 |
W—O2 | 0.22 | 2.28 | |
Hg—O1 | 0.41 | 1.98 | |
Hg—O2 | 0.04 | 2.84 |
Table 3 Mulliken key overlapping population of TMWO4 (TM=Zn, Cd, Hg)
Compound | Bond | Population | Length/Å |
---|---|---|---|
ZnWO4 | W—O1 | 0.86 | 1.82 |
W—O2 | 0.33 | 2.17 | |
Zn—O1 | 0.28 | 2.12 | |
Zn—O2 | 0.10 | 2.32 | |
CdWO4 | W—O1 | 0.87 | 1.82 |
W—O2 | 0.32 | 2.18 | |
Cd—O1 | 0.23 | 2.25 | |
Cd—O2 | 0.09 | 2.30 | |
HgWO4 | W—O1 | 0.99 | 1.78 |
W—O2 | 0.22 | 2.28 | |
Hg—O1 | 0.41 | 1.98 | |
Hg—O2 | 0.04 | 2.84 |
1 | PULLAR R C, FARRAH S, ALFORD N M. MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics[J]. Journal of the European Ceramic Society, 2007, 27(2/3): 1059-1063. |
2 | PANDEY P K, BHAVE N S, KHARAT R B. Spray deposition process of polycrystalline thin films of CuWO4 and study on its photovoltaic electrochemical properties[J]. Materials Letters, 2005, 59(24/25): 3149-3155. |
3 | ZHAO X, YAO W Q, WU Y, et al. Fabrication and photoelectrochemical properties of porous ZnWO4 film[J]. Journal of Solid State Chemistry, 2006, 179(8): 2562-2570. |
4 | HUANG G L, ZHU Y F. Synthesis and photocatalytic performance of ZnWO4 catalyst[J]. Materials Science and Engineering: B, 2007, 139(2/3): 201-208. |
5 | ZHANG C L, ZHANG H L, ZHANG K Y, et al. Photocatalytic activity of ZnWO₄: band structure, morphology and surface modification[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14423-14432. |
6 | ASLAM I, CAO C B, TANVEER M, et al. A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants[J]. RSC Advances, 2015, 5(8): 6019-6026. |
7 | DE MACEDO O B, DE OLIVEIRA A L M, DOS SANTOS I M G. Zinc tungstate: a review on its application as heterogeneous photocatalyst[J]. Cerâmica, 2022, 68(387): 294-315. |
8 | BRIK M G, NAGIRNYI V, KIRM M. Ab-initio studies of the electronic and optical properties of ZnWO4 and CdWO4 single crystals[J]. Materials Chemistry and Physics, 2012, 134(2/3): 1113-1120. |
9 | YU Y, WU S M, ZHU X R, et al. Crystal growth, structure, optical properties and laser performance of new tungstate Yb∶Na2La4(WO4)7 crystals[J]. Optical Materials, 2021, 111: 110653. |
10 | ZHARIKOV E V, ZALDO C, DÍAZ F. Double tungstate and molybdate crystals for laser and nonlinear optical applications[J]. MRS Bulletin, 2009, 34(4): 271-276. |
11 | BASIEV T T, SOBOL A A, VORONKO Y K, et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers[J]. Optical Materials, 2000, 15(3): 205-216. |
12 | NAGORNAYA L L, DANEVICH F A, DUBOVIK A M, et al. Tungstate and molybdate scintillators to search for dark matter and double beta decay[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2513-2518. |
13 | NAGORNAYA L L, DUBOVIK А M, GRINYOV В V, et al. Research and development of alkali earth tungstate and molybdate crystal scintillators for search for rare events[J]. Functional materials, 2009, 16(1): 55. |
14 | KOBAYASHI M, ISHII M, USUKI Y, et al. Cadmium tungstate scintillators with excellent radiation hardness and low background[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 349(2/3): 407-411. |
15 | THONGTEM S, WANNAPOP S, THONGTEM T. Characterization of CoWO4 nano-particles produced using the spray pyrolysis[J]. Ceramics International, 2009, 35(5): 2087-2091. |
16 | LACOMBA-PERALES R, RUIZ-FUERTES J, ERRANDONEA D, et al. Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius[J]. Europhysics Letters, 2008, 83(3): 37002. |
17 | KACZMAREK A M, VAN DEUN R. Rare earth tungstate and molybdate compounds:from 0D to 3D architectures[J]. Chemical Society Reviews, 2013, 42(23): 8835-8848. |
18 | SIRIWONG P, THONGTEM T, PHURUANGRAT A, et al. Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods[J]. CrystEngComm, 2011, 13(5): 1564-1569. |
19 | KRÖGER F A. Some aspects of the luminescence of solids[M]. New York: Elsevier Pub. Co., 1948. |
20 | KOLOBANOV V N, KAMENSKIKH I A, MIKHAILIN V V, et al. Optical and luminescent properties of anisotropic tungstate crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1/2): 496-503. |
21 | YAN T J, LI L P, TONG W M, et al. CdWO4 polymorphs: selective preparation, electronic structures, and photocatalytic activities[J]. Journal of Solid State Chemistry, 2011, 184(2): 357-364. |
22 | LOU Z D, HAO J H, COCIVERA M. Luminescence of ZnWO4 and CdWO4 thin films prepared by spray pyrolysis[J]. Journal of Luminescence, 2002, 99(4): 349-354. |
23 | MANJÓN F, LÓPEZ-SOLANO J, RAY S, et al. High-pressure structural and lattice dynamical study of HgWO4 [J]. Physical Review B, 2010, 82: 035212. |
24 | WU Y G, ZHANG J H, LONG B W, et al. The thermodynamic stability, electronic and photocatalytic properties of the ZnWO4(100) surface as predicted by screened hybrid density functional theory[J]. ACS Omega, 2021, 6(23): 15057-15067. |
25 | YADAV P, DEV BHUYAN P, ROUT S K, et al. Correlation between experimental and theoretical study of scheelite and wolframite-type tungstates[J]. Materials Today Communications, 2020, 25: 101417. |
26 |
HUANG B S, HART J N. DFT study of various tungstates for photocatalytic water splitting[J]. Physical Chemistry Chemical Physics, 2020, 22(3): 1727-1737.
DOI PMID |
27 | SARKER P, PRASHER D, GAILLARD N, et al. Predicting a new photocatalyst and its electronic properties by density functional theory[J]. Journal of Applied Physics, 2013, 114(13): 133508. |
28 | WANG J, YANG L J, ZHANG L. Constructed 3D hierarchical micro-flowers CoWO4@Bi2WO6 Z-scheme heterojunction catalyzer: two-channel photocatalytic H2O2 production and antibiotics degradation[J]. Chemical Engineering Journal, 2021, 420: 127639. |
29 | LI H P, HOU W G, TAO X T, et al. Conjugated polyene-modified Bi2MO6 (M=Mo or W) for enhancing visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 172: 27-36. |
30 |
JING L Q, ZHOU W, TIAN G H, et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts[J]. Chemical Society Reviews, 2013, 42(24): 9509-9549.
DOI PMID |
31 | SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. |
32 | ZORINA M L, SYRITSO L F. IR spectra and structures of tungstates[J]. Journal of Applied Spectroscopy, 1972, 16(6): 774-776. |
33 | DATURI M, BUSCA G, BOREL M M, et al. ChemInform abstract: vibrational and XRD study of the system CdWO4-CdMoO4 [J]. ChemInform, 1997, 28(35): 4358-4369. |
34 | ÅSBERG DAHLBORG M B, SVENSSON G. HgWO4 synthesized at high pressure and temperature[J]. Acta Crystallographica Section C Crystal Structure Communications, 2002, 58(3): i35-i36. |
35 | HAMANN D R, SCHLÜTER M, CHIANG C. Norm-conserving pseudopotentials[J]. Physical Review Letters, 1979, 43(20): 1494-1497. |
36 |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
37 | HERMAN F. Theoretical investigation of the electronic energy band structure of solids[J]. Reviews of Modern Physics, 1958, 30(1): 102-121. |
38 | PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992, 64(4): 1045-1097. |
39 | SRIVASTAVA G P, WEAIRE D. The theory of the cohesive energies of solids[J]. Advances in Physics, 1987, 36(4): 463-517. |
40 | MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. |
41 | MULLIKEN R S. Electronic population analysis on LCAO-MO molecular wave functions. I[J]. 1955, 23(10): 1833-1840. |
42 | 王云杰, 文杜林, 苏欣. A3PO4(A=Li, Na, K, Rb, Cs)电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(1): 123-131. |
WANG Y J, WEN D L, SU X. A3PO4 (A = Li, Na, K, Rb, Cs) electronic structure and optical properties: a first-principles study[J]. Journal of Synthetic Crystals, 2024, 53(1): 123-131 (in Chinese). | |
43 | 张博, 王云杰, 齐亚杰, 等. 碱金属钼酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2024, 53(6): 999-1007. |
ZHANG B, WANG Y J, QI Y J, et al. First principles study on the structure-property relationship of alkali metal molybdates[J]. Journal of Synthetic Crystals, 2024, 53(6): 999-1007 (in Chinese). | |
44 |
丁家福, 和志豪, 王云杰, 等. 通过硫代调控Ga、In、Tl磷酸盐光学性质的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 95-106.
DOI |
DING J F, HE Z H, WANG Y J, et al. First-principles study on the regulation of optical properties of gallium, indium, and thallium phosphates through sulfur substitution[J]. Journal of Synthetic Crystals, 2025, 54(1): 95-106 (in Chinese). | |
45 | SU X, WANG Y, YANG Z H, et al. Experimental and theoretical studies on the linear and nonlinear optical properties of Bi2ZnOB2O6 [J]. The Journal of Physical Chemistry C, 2013, 117(27): 14149-14157. |
46 | ZHOU X Y, HUANG J B, CAI G M, et al. Large optical polarizability causing positive effects on the birefringence of planar-triangular BO3 groups in ternary borates[J]. Dalton Transactions, 2020, 49(10): 3284-3292. |
47 | GUO X J, GAO Z L, TAO X T. Recent advances in tellurite molybdate/tungstate crystals[J]. CrystEngComm, 2022, 24(43): 7516-7529. |
48 | PALMER B A, MORTE-RÓDENAS A, KARIUKI B M, et al. X-ray birefringence from a model anisotropic crystal[J]. The Journal of Physical Chemistry Letters, 2011, 2(18): 2346-2351. |
49 | LI Y Q, ZHANG X, ZHOU Y, et al. An optically anisotropic crystal with large birefringence arising from cooperative π orbitals[J]. Angewandte Chemie, 2022, 61(38): e202208811. |
50 | YANG H, JUSSILA H, AUTERE A, et al. Optical waveplates based on birefringence of anisotropic two-dimensional layered materials[J]. ACS Photonics, 2017, 4(12): 3023-3030. |
51 | CAO L L, PENG G, LIAO W B, et al. A microcrystal method for the measurement of birefringence[J]. CrystEngComm, 2020, 22(11): 1956-1961. |
52 | TUDI A, HAN S J, YANG Z H, et al. Potential optical functional crystals with large birefringence: recent advances and future prospects[J]. Coordination Chemistry Reviews, 2022, 459: 214380. |
[1] | REN Longjun, CAI Shihu, WANG Fuyuan, JIANG Ping. Prediction of Monolayer C2B6 with Ultra-High Carrier Mobility [J]. Journal of Synthetic Crystals, 2025, 54(5): 850-856. |
[2] | XIE You, XIAO Xiaosa, JIANG Ningning, ZHANG Tao. Electrical Transport Properties of Two-Dimensional BC6N/BN Lateral Heterostructure [J]. Journal of Synthetic Crystals, 2025, 54(5): 825-831. |
[3] | MIN Yueqi, XIE Wenqin, XIE Liang, AN Kang. Optoelectronic Properties of CsPbX3 (X=Cl, Br, I) Regulated by Pd Doping [J]. Journal of Synthetic Crystals, 2025, 54(4): 605-616. |
[4] | LI Pengcheng, ZHOU Jun, WANG Weigang, WU Kunyao, LI Zhao. Preparation of Li2Mg3TiO6:Eu3+ Red Phosphors and Its Application in White LED [J]. Journal of Synthetic Crystals, 2025, 54(4): 643-651. |
[5] | ZHANG Jiaqi, LIN Xueling, TIAN Wenhu, MA Wenjie, ZHANG Xiu, MA Xiaowei, ZHU Qiaoping, HAO Rui, PAN Fengchun. Effect of Strain on Optical Properties of Si Doped A-TiO2 Studied by the First-Principles [J]. Journal of Synthetic Crystals, 2025, 54(4): 617-628. |
[6] | LI Qi, FU Bo, YU Bowen, ZHAO Hao, LIN Na, JIA Zhitai, ZHAO Xian, TAO Xutang. First-Principle Study on the Interaction Between Al/In Doping and (100) Twins in β-Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(3): 371-377. |
[7] | ZHA Xianhu, WAN Yuxi, ZHANG Daohua. Research Progress on p-Type Conduction of β Phase Gallium Oxide [J]. Journal of Synthetic Crystals, 2025, 54(2): 177-189. |
[8] | GUO Manyi, WU Jiaxing, YANG Fan, WANG Chao, WANG Yanjie, CHI Yaodan, YANG Xiaotian. First-Principle Study of ε-Ga2O3 Crystal and Its Intrinsic Defects [J]. Journal of Synthetic Crystals, 2025, 54(2): 212-218. |
[9] | MO Qiuyan, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Adsorption of SO2 and CO on ReS2 Surface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 107-114. |
[10] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
[11] | WANG Yunjie, HE Zhihao, DING Jiafu, SU Xin. Influence of Cations on the Structural Framework and the Origin of Birefringence in X2(PO4)2 (X=Ba, Pb) and XPO4 (X=Y, Bi) [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 85-94. |
[12] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
[13] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
[14] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
[15] | YANG Ling, SU Binbin, WANG Hongsheng, LI Jinzhao, LI Yesheng, CHEN Rui. Synthesis, Crystal Structure and Photocatalytic Properties of Nanosized La3+-Substituted Arsenotungstate Cluster [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1591-1598. |
Viewed | ||||||
Full text |
|
|||||
Abstract 28
|
|
|||||