Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (6): 935-941.DOI: 10.16553/j.cnki.issn1000-985x.2025.0022
• Research Articles • Previous Articles Next Articles
CHEN Zihang1,2(), WANG Xiaodan1(
), LIU Jian2, LIU Peng2, XU Xiaodong2(
), XU Jun3
Received:
2025-02-04
Online:
2025-06-20
Published:
2025-06-23
CLC Number:
CHEN Zihang, WANG Xiaodan, LIU Jian, LIU Peng, XU Xiaodong, XU Jun. Growth and Spectral Properties of Er∶CNGG Crystals by the Micro-Pulling-Down Method[J]. Journal of Synthetic Crystals, 2025, 54(6): 935-941.
Crystal | a=b=c/nm | V/nm3 |
---|---|---|
CNGG | 1.250 7 | 1.956 4 |
0.3% Er∶CNGG | 1.250 4 | 1.954 9 |
2.0% Er∶CNGG | 1.249 6 | 1.951 3 |
3.0% Er∶CNGG | 1.248 0 | 1.943 9 |
5.0% Er∶CNGG | 1.246 8 | 1.938 2 |
Table 1 Lattice parameters of CNGG and Er∶CNGG crystals
Crystal | a=b=c/nm | V/nm3 |
---|---|---|
CNGG | 1.250 7 | 1.956 4 |
0.3% Er∶CNGG | 1.250 4 | 1.954 9 |
2.0% Er∶CNGG | 1.249 6 | 1.951 3 |
3.0% Er∶CNGG | 1.248 0 | 1.943 9 |
5.0% Er∶CNGG | 1.246 8 | 1.938 2 |
Doping concentration/% | Absorption coefficient at 968 nm/cm-1 | FWHM/nm |
---|---|---|
0.3 | 0.09 | 18.2 |
2.0 | 0.45 | 17.1 |
3.0 | 0.96 | 16.8 |
5.0 | 1.70 | 17.5 |
Table 2 Absorption coefficient and FWHM at 968 nm of Er∶CNGG crystals
Doping concentration/% | Absorption coefficient at 968 nm/cm-1 | FWHM/nm |
---|---|---|
0.3 | 0.09 | 18.2 |
2.0 | 0.45 | 17.1 |
3.0 | 0.96 | 16.8 |
5.0 | 1.70 | 17.5 |
Doping concentration/% | FWHM/nm | FWHM/nm | FWHM/nm |
---|---|---|---|
0.3 | 49.7 (2 652 nm) | 20.5 (2 709 nm) | 58.2 (2 795 nm) |
2.0 | 54.9 (2 653 nm) | 19.7 (2 709 nm) | 67.3 (2 797 nm) |
3.0 | 43.3 (2 651 nm) | 17.6 (2 709 nm) | 56.9 (2 797 nm) |
5.0 | 42.1 (2 652 nm) | 17.3 (2 709 nm) | 54.2 (2 797 nm) |
Table 3 FWHM of 4I11/2→4I13/2 transition in Er∶CNGG crystals
Doping concentration/% | FWHM/nm | FWHM/nm | FWHM/nm |
---|---|---|---|
0.3 | 49.7 (2 652 nm) | 20.5 (2 709 nm) | 58.2 (2 795 nm) |
2.0 | 54.9 (2 653 nm) | 19.7 (2 709 nm) | 67.3 (2 797 nm) |
3.0 | 43.3 (2 651 nm) | 17.6 (2 709 nm) | 56.9 (2 797 nm) |
5.0 | 42.1 (2 652 nm) | 17.3 (2 709 nm) | 54.2 (2 797 nm) |
1 | GODARD A. Infrared (2-12 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128. |
2 | NIE H K, SHI B N, XIA H P, et al. High-repetition-rate kHz electro-optically Q-switched Ho, Pr∶YLF 2.9 µm bulk laser[J]. Optics Express, 2018, 26(26): 33671-33677. |
3 | MARTYSHKIN D, FEDOROV V, HAMLIN S J, et al. 350 mJ electro-optically Q-switched 2.79 µm Cr∶Er∶YSGG MOPA[J]. Optics Express, 2023, 31(11): 18525-18532. |
4 | NIE H K, WANG F F, LIU J T, et al. Rare-earth ions-doped mid-infrared (2.7-3 µm) bulk lasers: a review[J]. Chinese Optics Letters, 2021, 19(9): 091407. |
5 | WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405. |
6 | HU Q Q, NIE H K, MU W X, et al. Bulk growth and an efficient mid-IR laser of high-quality Er∶YSGG crystals[J]. CrystEngComm, 2019, 21(12): 1928-1933. |
7 | NEWBURGH G A, DUBINSKII M. Power and efficiency scaling of Er∶ZBLAN fiber laser[J]. Laser Physics Letters, 2021, 18(9): 095102. |
8 | POLLACK S A, CHANG D B. Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals[J]. Optical and Quantum Electronics, 1990, 22(1): S75-S93. |
9 | CHEN J K, SUN D L, LUO J Q, et al. Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er, Pr∶GYSGG crystal[J]. Optics Express, 2013, 21(20): 23425-23432. |
10 | MA W W, SU L B, XU X D, et al. Improved 2.79 μm continuous-wave laser performance from a diode-end pumped Er, Pr∶CaF2 crystal[J]. Journal of Alloys and Compounds, 2017, 695: 3370-3375. |
11 | WANG Y, YOU Z Y, LI J F, et al. Spectroscopic investigations of highly doped Er3+∶GGG and Er3+/Pr3+∶GGG crystals[J]. Journal of Physics D: Applied Physics, 2009, 42(21): 215406. |
12 | LUPEI V, GEORGESCU S, FLOREA V. On the dynamics of population inversion for 3 μm Er3+ lasers[J]. IEEE Journal of Quantum Electronics, 1993, 29(2): 426-434. |
13 | YOU L, LU D Z, PAN Z B, et al. High-efficiency 3 μm Er∶YGG crystal lasers[J]. Optics Letters, 2018, 43(23): 5873-5876. |
14 | QUAN C, SUN D L, ZHANG H L, et al. 13-W and 1000-Hz of a 2.7-µm laser on the 968 nm LD side-pumped Er∶YAP crystal with concave end-faces[J]. Optics Express, 2021, 29(14): 21655-21663. |
15 | ZHANG M, YIN Y R, ZHANG L, et al. Self-Q-switched Er∶Lu2O3 laser at 2.74 µm[J]. Applied Optics, 2023, 62(6): 1462-1466. |
16 | HU L Z, SUN D L, LUO J Q, et al. Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er∶YSGG crystal[J]. Journal of Luminescence, 2020, 226: 117502. |
17 | XUE Y Y, LI N, WANG D H, et al. Spectroscopic and laser properties of Tm∶CNGG crystals grown by the micro-pulling-down method[J]. Journal of Luminescence, 2019, 213: 36-39. |
18 | 于浩海, 潘忠奔, 张怀金, 等. 无序激光晶体及其超快激光研究进展[J]. 人工晶体学报, 2021, 50(4): 648-668+583. |
YU H H, PAN Z B, ZHANG H J, et al. Development of disordered laser crystals and their ultrafast lasers[J]. Journal of Synthetic Crystals, 2021, 50(4): 648-668+583 (in Chinese). | |
19 | SCHMIDT A, GRIEBNER U, ZHANG H J, et al. Passive mode-locking of the Yb∶CNGG laser[J]. Optics Communications, 2010, 283(4): 567-569. |
20 | ZHANG Y G, PETROV V, GRIEBNER U, et al. Diode-pumped SESAM mode-locked Yb∶CLNGG laser[J]. Optics & Laser Technology, 2015, 69: 144-147. |
21 | XIE G Q, QIAN L J, YUAN P, et al. Generation of 534 fs pulses from a passively mode-locked Nd∶CLNGG-CNGG disordered crystal hybrid laser[J]. Laser Physics Letters, 2010, 7(7): 483-486. |
22 | MA J, PAN Z B, WANG J, et al. Generation of sub-50 fs soliton pulses from a mode-locked Yb, Na∶CNGG disordered crystal laser[J]. Optics Express, 2017, 25(13): 14968. |
23 | WANG Y C, ZHAO Y G, PAN Z B, et al. 78 fs SWCNT-SA mode-locked Tm∶CLNGG disordered garnet crystal laser at 2017 nm[J]. Optics Letters, 2018, 43(17): 4268-4271. |
24 | PAN Z B, WANG Y C, ZHAO Y G, et al. Generation of 84-fs pulses from a mode-locked Tm∶CNNGG disordered garnet crystal laser[J]. Photonics Research, 2018, 6(8): 800. |
25 | PAN Z B, LOIKO P, WANG Y C, et al. Disordered Tm3+, Ho3+-codoped CNGG garnet crystal: towards efficient laser materials for ultrashort pulse generation at ∼2 μm[J]. Journal of Alloys and Compounds, 2021, 853: 157100. |
26 | TANG K Y, YINGMING S, GAI J G, et al. Evaluation of growth, thermal, and spectroscopic properties of Er3+-doped CLNGG crystals for use in 2.7 μm laser[J]. Crystals, 2021, 11(2): 126. |
27 | SOJKA L, PAJEWSKI L, LAMRINI S, et al. Experimental investigation of actively Q-switched Er3+∶ZBLAN fiber laser operating at around 2.8 µm[J]. Sensors, 2020, 20(16): 4642. |
28 | UEHARA H, TOKITA S, KAWANAKA J, et al. Optimization of laser emission at 2.8 μm by Er∶Lu2O3 ceramics[J]. Optics Express, 2018, 26(3): 3497-3507. |
29 | 郭 俊, 刘 坚, 王泽彬, 等. Nd∶ASL单晶光纤的生长、光谱和激光性能研究[J]. 人工晶体学报, 2024, 53(11): 1877-1883. |
GUO J, LIU J, WANG Z B, et al. Growth, spectroscopic properties and laser performance of Nd∶ASL single crystal fibers[J]. Journal of Synthetic Crystals, 2024, 53(11): 1877-1883 (in Chinese). | |
30 | 顾 鹏, 王鹏刚, 官伟明, 等. 单晶光纤生长技术研究进展[J]. 人工晶体学报, 2021, 50(12): 2362-2378. |
GU P, WANG P G, GUAN W M, et al. Research progress on growth techniques of single crystal fiber[J]. Journal of Synthetic Crystals, 2021, 50(12): 2362-2378 (in Chinese). | |
31 | DÉLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900. |
32 | KAMINSKII A A, BELOKONEVA E L, BUTASHIN A V, et al. Crystal structure and spectral luminescence properties of the cation-deficient garnet Ca3(Nb,Ga)2Ga3O12-Nd3+ [J]. Inorganic Materials, 1986, 22(7): 927-936. |
33 | ZHAO X Y, SUN D L, LUO J Q, et al. Spectroscopic and laser properties of Er∶LuSGG crystal for high-power ∼2.8 µm mid-infrared laser[J]. Optics Express, 2020, 28(6): 8843-8852. |
[1] | ZHU Litao, LIU Lei, YUAN Shuai, ZHOU Shenglang, ZHANG Huali, WANG Chen, GAO Yu, CAO Jianwei, YU Xuegong, YANG Deren. Effect of Cable Diameter on Growth Stability of Large-Size Czochralski Silicon Crystals [J]. Journal of Synthetic Crystals, 2025, 54(6): 942-948. |
[2] | DU Qingbo, YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector [J]. Journal of Synthetic Crystals, 2025, 54(5): 737-756. |
[3] | YU Feng, ZHENG Qiang, QI Tingyu, ZHANG Yubai, MA Yali, JIA Songyan, LI Xue. Controlled Preparation of High Aspect Ratio Calcium Carbonate Whiskers from Dolomite Refined Solution [J]. Journal of Synthetic Crystals, 2025, 54(5): 898-908. |
[4] | JIANG Xianlong, ZHENG Weitao, ZHU Yunzhong. In-Situ Diagnosis of Lithium Niobate Crystal Growth Interface Flipping Phenomenon [J]. Journal of Synthetic Crystals, 2025, 54(4): 533-542. |
[5] | QI Zhanguo, WANG Shouzhi, LI Qiubo, WANG Zhongxin, SHAO Huihui, LIU Lei, WANG Guodong, SUN Defu, YU Huidong, JIANG Kaize, ZHANG Shuang, CHEN Xiufang, XU Xiangang, ZHANG Lei. Preparation of 4-Inch High-Quality GaN Single Crystal Substrates [J]. Journal of Synthetic Crystals, 2025, 54(4): 717-720. |
[6] | WANG Ziming, ZHANG Yachao, FENG Qian, LIU Shiteng, LIU Yuhong, WANG Yao, WANG Long, ZHANG Jincheng, HAO Yue. ε-Ga2O3 Growth on c-Plane Sapphire Substrate with Metal-Organic Chemical Vapor Deposition [J]. Journal of Synthetic Crystals, 2025, 54(3): 420-425. |
[7] | YAN Yuchao, WANG Cheng, LU Changcheng, LIU Yingying, XIA Ning, JIN Zhu, ZHANG Hui, YANG Deren. Growth of 2-Inch Fe-Doped β-Ga2O3 Single Crystal with High Resistance and Properties of (010) Substrates [J]. Journal of Synthetic Crystals, 2025, 54(2): 197-201. |
[8] | YANG Xiaolong, TANG Huili, ZHANG Chaoyi, SUN Peng, HUANG Lin, CHEN Long, XU Jun, LIU Bo. Growth and Spectral Properties of Bi-Doped β-Ga2O3 Single Crystal by Optical Floating Zone Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 202-211. |
[9] | HUANG Dongyang, HUANG Haotian, PAN Mingyan, XU Ziqian, JIA Ning, QI Hongji. Growth and Properties of β-Ga2O3 Single Crystal by Vertical Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 190-196. |
[10] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
[11] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
[12] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
[13] | LI Lin, ZHANG Peixiong, TAN Juncheng, ZHU Siqi, YIN Hao, LI Zhen, CHEN Zhenqiang. Investigation of Localized Cluster Structure and Spectral Properties of Er-Doped PbF2 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1112-1120. |
[14] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
[15] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
Viewed | |||||||||||||
Full text |
|
||||||||||||
Abstract |
|
||||||||||||