Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (7): 1245-1255.DOI: 10.16553/j.cnki.issn1000-985x.2025.0049
• Research Articles • Previous Articles Next Articles
XIAO Daizhen(
), GAO Rong, CHEN Yi, MI Qixi(
)
Received:2025-03-13
Online:2025-07-20
Published:2025-07-30
CLC Number:
XIAO Daizhen, GAO Rong, CHEN Yi, MI Qixi. Growth, Electrical and Optical Properties of All Inorganic Tin Perovskite CsSnBr3 Crystals[J]. Journal of Synthetic Crystals, 2025, 54(7): 1245-1255.
| Sample | Mobility/(cm2·V-1·s-1) | Life time/ns | Diffusion length/nm |
|---|---|---|---|
| EG-CSB | 40 | 1.12 | 346 |
| VB-CSB∶Sn(Ⅳ) | 36 | 0.65 | 252 |
| VB-CSB | 5.7 | 0.57 | 91 |
Table 1 Electrical transport properties of different CsSnBr3 samples
| Sample | Mobility/(cm2·V-1·s-1) | Life time/ns | Diffusion length/nm |
|---|---|---|---|
| EG-CSB | 40 | 1.12 | 346 |
| VB-CSB∶Sn(Ⅳ) | 36 | 0.65 | 252 |
| VB-CSB | 5.7 | 0.57 | 91 |
| Element | Atomic ratio | Approximation |
|---|---|---|
| Br | 66.89 | 6 |
| Cs | 22.26 | 2 |
| Sn | 10.84 | 1 |
Table 2 Element composition and content of impurity crystals
| Element | Atomic ratio | Approximation |
|---|---|---|
| Br | 66.89 | 6 |
| Cs | 22.26 | 2 |
| Sn | 10.84 | 1 |
| Number | 1 | 2 | 3 | 4 | 5 | 6 | Average |
|---|---|---|---|---|---|---|---|
| Relative error/% | 0.53 | 0.05 | 0.07 | 0.21 | 0.24 | 0.18 | 0.21 |
Table 3 Accuracy test of gravimetric analysis of Cs+
| Number | 1 | 2 | 3 | 4 | 5 | 6 | Average |
|---|---|---|---|---|---|---|---|
| Relative error/% | 0.53 | 0.05 | 0.07 | 0.21 | 0.24 | 0.18 | 0.21 |
| Number | VB-CSB/% | EG-CSB/% |
|---|---|---|
| 1 | 50.11 | 50.48 |
| 2 | 50.48 | 50.36 |
| 3 | 50.40 | 50.55 |
| 4 | 50.33 | 50.27 |
| 5 | 50.13 | 50.41 |
| 6 | 50.56 | 50.45 |
| Average | 50.29 | 50.41 |
| Standard deviation | 0.19 | 0.10 |
Table 4 Molar percentage of Cs+ in all positive ions in CsSnBr3 sample obtained by gravimetric method
| Number | VB-CSB/% | EG-CSB/% |
|---|---|---|
| 1 | 50.11 | 50.48 |
| 2 | 50.48 | 50.36 |
| 3 | 50.40 | 50.55 |
| 4 | 50.33 | 50.27 |
| 5 | 50.13 | 50.41 |
| 6 | 50.56 | 50.45 |
| Average | 50.29 | 50.41 |
| Standard deviation | 0.19 | 0.10 |
| [1] | DOU L T, YANG Y M, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 2014, 5: 5404. |
| [2] | ZHU H M, FU Y P, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6): 636-642. |
| [3] | CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364): 739-744. |
| [4] | RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235. |
| [5] | LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent[J]. Nature, 2018, 562(7726): 245-248. |
| [6] | QUAN L N, RAND B P, FRIEND R H, et al. Perovskites for next-generation optical sources[J]. Chemical Reviews, 2019, 119(12): 7444-7477. |
| [7] | FENG A B, JIANG X M, ZHANG X Y, et al. Shape control of metal halide perovskite single crystals: from bulk to nanoscale[J]. Chemistry of Materials, 2020, 32(18): 7602-7617. |
| [8] | CAO J P, TAI Q D, YOU P, et al. Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive[J]. Journal of Materials Chemistry A, 2019, 7(46): 26580-26585. |
| [9] | KONSTANTAKOU M, STERGIOPOULOS T. A critical review on tin halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(23): 11518-11549. |
| [10] | ABDELMAGEED G, JEWELL L, HELLIER K, et al. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells[J]. Applied Physics Letters, 2016, 109(23): 233905. |
| [11] | DEEPTHI JAYAN K, SEBASTIAN V. Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts[J]. Solar Energy, 2021, 217: 40-48. |
| [12] | WU Y, ZHOU H W, YIN J, et al. Growth, structural, optical and electronic transport properties of tetragonal CH3NH3SnBr3 perovskite single crystals[J]. Dalton Transactions, 2022, 51(12): 4623-4626. |
| [13] | SUN L, LI W, ZHU W, et al. Single-crystal perovskite detectors: development and perspectives[J]. Journal of Materials Chemistry C, 2020, 8(34): 11664-11674. |
| [14] | YAO H H, ZHOU F G, LI Z Z, et al. Strategies for improving the stability of tin-based perovskite (ASnX3) solar cells[J]. Advanced Science, 2020, 7(10): 1903540. |
| [15] | LI B H, LONG R Y, XIA Y, et al. All-inorganic perovskite CsSnBr3 as a thermally stable, free-carrier semiconductor[J]. Angewandte Chemie International Edition, 2018, 57(40): 13154-13158. |
| [16] | HEO J M, CHO H C, LEE S C, et al. Bright lead-free inorganic CsSnBr3 perovskite light-emitting diodes[J]. ACS Energy Letters, 2022, 7(8): 2807-2815. |
| [17] | ZHANG Y Y, YAO Q S, QIAN J C, et al. Thermoelectric properties of all-inorganic perovskite CsSnBr3: a combined experimental and theoretical study[J]. Chemical Physics Letters, 2020, 754: 137637. |
| [18] | WU Z, ZHUANG J, LIN Y, et al. One- and two-photon excited photoluminescence and suppression of thermal quenching of CsSnBr3 microsquare and micropyramid[J]. ACS Nano, 2021, 15(12): 19613-19620. |
| [19] | ZOU Y Q, ZHOU Y X, XI Y Y, et al. Surface field effect probed by THz emission in lead-free perovskite CsSnBr3 films and CsSnBr3/SiO2/Si heterojunction[J]. Surfaces and Interfaces, 2024, 46: 104046. |
| [20] | LIU Z H, JUNG, H B, SOTOME M, et al. Substrate temperature dependence of vapor phase deposition of all-inorganic lead-free CsSnBr3 perovskite thin films[J]. Japanese Journal of Applied Physics, 2024, 63: 02SP23. |
| [21] | 介万奇. 晶体生长原理与技术[M]. 2版. 北京: 科学出版社, 2019: 333. |
| JIE W Q. Principles and techniques of crystal growth[M]. 2nd Edition. Beijing: Science Press, 2019: 333 (in Chinese). | |
| [22] | CHUNG I, SONG J H, IM J, et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. high hole mobility and phase-transitions[J]. Journal of the American Chemical Society, 2012, 134(20): 8579-8587. |
| [23] | HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications, 2018, 9(1): 1609. |
| [24] | PIERRE V. Springer Materials: Br-Cs-Sn vertical section of ternary phase diagram[DB/OL]. [2025-03-12]. . |
| [1] | ZHANG Shuyi, LIU Gengling, WANG Hao, LU Yue, JIANG Xianyuan, LI Wenzhuo, LIU Cong, LYU Yingbo, WU Zhongchen, LIU Dong, CHEN Yao. Research Progress of Tin-Based Perovskite Crystals and Devices [J]. Journal of Synthetic Crystals, 2025, 54(7): 1189-1207. |
| [2] | JIA Yuzhen, LI Zhenglong, YAN Xinlong, WANG Ruichen, PENG Chen, DUAN Weiheng, YANG Weihu, HE Weimin, SONG Baijun, CHENG Yao, FAN Xiaoyu, YANG Fan. Investigation of Crystal Growth and Scintillation Properties of 0-Dimensional Perovskite Cs3CdBr5 [J]. Journal of Synthetic Crystals, 2025, 54(7): 1221-1228. |
| [3] | WANG Zhenyou, MAO Changyu, CHEN Weihao, XU Junjie, YU Xuezhou, WU Haixin. Fabrication of ϕ60 mm Large-Size Infrared Nonlinear BaGa4Se7 Crystals and Devices [J]. Journal of Synthetic Crystals, 2025, 54(6): 909-911. |
| [4] | REN Longjun, CAI Shihu, WANG Fuyuan, JIANG Ping. Prediction of Monolayer C2B6 with Ultra-High Carrier Mobility [J]. Journal of Synthetic Crystals, 2025, 54(5): 850-856. |
| [5] | LI Jiahe, ZHENG Lili, ZHANG Hui, LI Xiang, CHEN Junfeng. Influence of Thermal Field on the Interface Shape and Growth Rate of Fluoride Crystals Grown by Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(5): 772-783. |
| [6] | JIA Xiuyang, JIA Zhigang, DONG Hailiang, CHEN Xiaodong, GAO Maolin, XU Bingshe. Symmetric Oxide Confinement Structure Improves 795 nm VCSEL Single-Mode Power [J]. Journal of Synthetic Crystals, 2025, 54(5): 809-818. |
| [7] | LIU Wenyu, QIAN Lu, LI Fangjian, PAN Shangke, SUN Zhigang, CHEN Hongbing, PAN Jianguo. Growth and Luminescence Properties of Li2MoO4 Crystal by Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(5): 793-800. |
| [8] | HAN Yu, JIAO Teng, YU Han, SAI Qinglin, CHEN Duanyang, LI Zhen, LI Yihan, ZHANG Zhao, DONG Xin. Effect of Substrate Crystal Planes on the Properties of Homoepitaxial n-Ga2O3 Thin Films Grown by MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 438-444. |
| [9] | HUANG Dongyang, HUANG Haotian, PAN Mingyan, XU Ziqian, JIA Ning, QI Hongji. Growth and Properties of β-Ga2O3 Single Crystal by Vertical Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 190-196. |
| [10] | ZHOU Lina, LIU Jianqiang, NIU Xiaowei. Growth of ø210 mm Large-Size Eu3+∶CaF2 Laser Crystal [J]. Journal of Synthetic Crystals, 2025, 54(2): 358-359. |
| [11] | ZHANG Ziqi, YANG Zhenni, KUANG Siliang, WEI Shenglong, XU Wenjing, CHEN Duanyang, QI Hongji, ZHANG Hongliang. Electronic Transport Properties of Sn-Doped β-Ga2O3 (010) Thin Films Grown by MBE Homoepitaxial Growth [J]. Journal of Synthetic Crystals, 2025, 54(2): 244-254. |
| [12] | ZHAO Qingsong, NIU Xiaodong, GU Xiaoying, DI Juqing. Growth and Properties of Large Size Ultra High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 34-39. |
| [13] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
| [14] | CHEN Xinxin, HAN Jiali, PAN Jianguo. Growth and Luminescence Properties of Large Size and High Quality CsCu2I3 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1106-1111. |
| [15] | SHI Yufeng, WANG Pengfei, MU Honghe, SU Liangbi. Numerical Simulation Investigation of Size Effect on Calcium Fluoride Crystals Grown by Vertical Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 973-981. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS