[1] ALLIOUX F M, GHASEMIAN M B, XIE W J, et al. Applications of liquid metals in nanotechnology[J]. Nanoscale Horizons, 2022, 7(2): 141-167. [2] BAHARFAR M, KALANTAR-ZADEH K. Emerging role of liquid metals in sensing[J]. ACS Sensors, 2022, 7(2): 386-408. [3] BLEVINS J, YANG G. On optical properties and scintillation performance of emerging Ga2O3: crystal growth, emission mechanisms and doping strategies[J]. Materials Research Bulletin, 2021, 144: 111494. [4] BOMHARD E M. The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide[J]. Environmental Toxicology and Pharmacology, 2020, 80: 103437. [5] SASAKI K. Prospects for β-Ga2O3: now and into the future[J]. Applied Physics Express, 2024, 17(9): 090101. [6] SUCHIKOVA Y, NAZAROVETS S, POPOV A I. Ga2O3 solar-blind photodetectors: from civilian applications to missile detection and research agenda[J]. Optical Materials, 2024, 157: 116397. [7] ZHOU J G, CHEN H, FU K, et al. Gallium oxide-based optical nonlinear effects and photonics devices[J]. Journal of Materials Research, 2021, 36(23): 4832-4845. [8] MUDIYANSELAGE D H, WANG D W, FU H Q. Ultrawide bandgap vertical β-(AlxGa1-x)2O3 Schottky barrier diodes on free-standing β-Ga2O3 substrates[J]. Journal of Vacuum Science & Technology A, 2023, 41(2): 023201. [9] WAN H H, LI J S, CHIANG C C, et al. NiO/β-(AlxGa1-x)2O3/Ga2O3 heterojunction lateral rectifiers with reverse breakdown voltage>7 kV[J]. Journal of Vacuum Science & Technology A, 2023, 41(3): 032701. [10] DANNO K, KADO M, HARA T, et al. Large critical field of Li-doped NiO investigated by p+-NiO/n+-Ga2O3 heterojunction diodes[J]. Japanese Journal of Applied Physics, 2023, 62: SF1007. [11] HAO W B, WU F H, LI W S, et al. Improved vertical β-Ga2O3 Schottky barrier diodes with conductivity-modulated p-NiO junction termination extension[J]. IEEE Transactions on Electron Devices, 2023, 70(4): 2129-2134. [12] WU F H, WANG Y G, JIAN G Z, et al. Superior performance β-Ga2O3 junction barrier Schottky diodes implementing p-NiO heterojunction and beveled field plate for hybrid Cockcroft-Walton voltage multiplier[J]. IEEE Transactions on Electron Devices, 2023, 70(3): 1199-1205. [13] ZHANG J C, DONG P F, DANG K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes[J]. Nature Communications, 2022, 13(1): 3900. [14] YU M, LV C D, YU J G, et al. High-performance photodetector based on sol-gel epitaxially grown α/β Ga2O3 thin films[J]. Materials Today Communications, 2020, 25: 101532. [15] YU J G, LOU J S, WANG Z, et al. Surface modification of β-Ga2O3 layer using pt nanoparticles for improved deep UV photodetector performance[J]. Journal of Alloys and Compounds, 2021, 872: 159508. [16] JIAO T, DANG X M, CHEN W, et al. Self-powered Schottky barrier photodiodes based on homoepitaxial Ga2O3 film[J]. Materials Letters, 2023, 349: 134847. [17] YU H, JIAO T, DANG X M, et al. Self-powered Schottky barrier photodetector with high responsivity based on homoepitaxial Ga2O3 films by MOCVD[J]. Semiconductor Science and Technology, 2024, 39(10): 105009. [18] JIAO T, CHEN W, YU H, et al. Self-powered flexible UV photodetectors based on MOCVD-grown Ga2O3 films on mica[J]. Materials Science in Semiconductor Processing, 2023, 165: 107706. [19] GAO C, WANG Y F, FU S H, et al. High-performance solar-blind ultraviolet photodetectors based on β-Ga2O3 thin films grown on p-Si(111) substrates with improved material quality via an AlN buffer layer introduced by metal-organic chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2023, 15(32): 38612-38622. [20] ORITA M, HIRAMATSU H, OHTA H, et al. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures[J]. Thin Solid Films, 2002, 411(1): 134-139. [21] DU X J, LI Z, LUAN C N, et al. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD[J]. Journal of Materials Science, 2015, 50(8): 3252-3257. [22] MI W, LI Z, LUAN C N, et al. Transparent conducting tin-doped Ga2O3 films deposited on MgAl2O4 (100) substrates by MOCVD[J]. Ceramics International, 2015, 41(2): 2572-2575. [23] OU S L, WUU D S, FU Y C, et al. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition[J]. Materials Chemistry and Physics, 2012, 133(2/3): 700-705. [24] ZHOU J G, CHEN H, FU H Q, et al. Demonstration of low loss β-Ga2O3 optical waveguides in the UV-NIR spectra[C]//Conference on Lasers and Electro-Optics. Washington, DC. Optica Publishing Group, 2020: 251108. [25] LIU R X, ZHANG Z, YANG Z, et al. Erbium-doped Ga2O3 waveguide for optical amplification[J]. Applied Physical Letters, 2023, 123(15): 151109. [26] LEACH J H, UDWARY K, RUMSEY J, et al. Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films[J]. APL Materials, 2018, 7(2): 022504. [27] MENG L Y, FENG Z X, BHUIYAN A F M A U, et al. High-mobility MOCVD β-Ga2O3 epitaxy with fast growth rate using trimethylgallium[J]. Crystal Growth & Design, 2022, 22(6): 3896-3904. [28] ZHANG Y W, ALEMA F, MAUZE A, et al. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature[J]. APL Materials, 2018, 7(2): 022506. [29] BHATTACHARYYA A, RANGA P, ROY S, et al. Low temperature homoepitaxy of (010) β-Ga2O3 by metalorganic vapor phase epitaxy: expanding the growth window[J]. Applied Physical Letters, 2020, 117(14): 142102. [30] MENG L Y, YU D S, HUANG H L, et al. MOCVD growth of β-Ga2O3 on (001) Ga2O3 substrates[J]. Crystal Growth & Design, 2024, 24(9): 3737-3745. [31] BIN ANOOZ S, GRÜNEBERG R, WOUTERS C, et al. Step flow growth of β-Ga2O3 thin films on vicinal (100) β-Ga2O3 substrates grown by MOVPE[J]. Applied Physical Letters, 2020, 116(18): 182106. [32] CHOU T S, SEYIDOV P, BIN ANOOZ S, et al. Fast homoepitaxial growth of (100) β-Ga2O3 thin films via MOVPE[J]. AIP Advances, 2021, 11(11): 115323. [33] LI Z M, JIAO T, LI W C, et al. Surface chemical composition and HRTEM analysis of heteroepitaxial β-Ga2O3 films grown by MOCVD[J]. Applied Surface Science, 2024, 652: 159327. [34] 党新明, 焦 腾, 陈沛然, 等. n-Ga2O3/p-GaAs异质结日盲紫外探测器制备[J]. 发光学报, 2024, 45(3): 476-483. DANG X M, JIAO T, CHEN P R, et al. Preparation of n-Ga2O3/p-GaAs heterojunction solar-blind UV photodetectors[J]. Chinese Journal of Luminescence, 2024, 45(3): 476-483 (in Chinese). [35] 陈沛然, 焦 腾, 陈 威, 等. p-Si/n-Ga2O3异质结制备与特性研究[J]. 人工晶体学报, 2024, 53(1): 73-81. CHEN P R, JIAO T, CHEN W, et al. Fabrication and characteristics of p-Si/n-Ga2O3 heterojunction[J]. Journal of Synthetic Crystals, 2024, 53(1): 73-81 (in Chinese). [36] 焦 腾, 李赜明, 王 谦, 等. Ga2O3/GaN/蓝宝石模板上β-Ga2O3薄膜的生长[J]. 发光学报, 2020, 41(3): 281-287. JIAO T, LI Z M, WANG Q, et al. Growth of β-Ga2O3 thin films on Ga2O3/GaN/sapphire template[J]. Chinese Journal of Luminescence, 2020, 41(3): 281-287 (in Chinese). [37] MU S, WANG M G, PEELAERS H, et al. First-principles surface energies for monoclinic Ga2O3 and Al2O3 and consequences for cracking of (AlxGa1-x)2O3[J]. APL Materials, 2020, 8(9): 091105. [38] HINUMA Y, GAKE T, OBA F. Band alignment at surfaces and heterointerfaces of Al2O3, Ga2O3, In2O3, and related group-III oxide polymorphs: a first-principles study[J]. Physical Review Materials, 2019, 3(8): 084605. [39] BERMUDEZ V M. The structure of low-index surfaces of β-Ga2O3[J]. Chemical Physics, 2006, 323(2/3): 193-203. [40] YAO Y Z, ISHIKAWA Y, SUGAWARA Y. Slip planes in monoclinic β-Ga2O3 revealed from its {010} face via synchrotron X-ray diffraction and X-ray topography[J]. Japanese Journal of Applied Physics, 2020, 59(12): 125501. [41] SCHEWSKI R, LION K, FIEDLER A, et al. Step-flow growth in homoepitaxy of β-Ga2O3 (100): the influence of the miscut direction and faceting[J]. APL Materials, 2018, 7(2): 022515. [42] GOTO K, MURAKAMI H, KURAMATA A, et al. Effect of substrate orientation on homoepitaxial growth of β-Ga2O3 by halide vapor phase epitaxy[J]. Applied Physics Letters, 2022, 120(10): 102102. |