Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (8): 1330-1351.DOI: 10.16553/j.cnki.issn1000-985x.2025.0094
• Reviews • Previous Articles Next Articles
ZHANG Leilei1(
), XUE Zexu1, SUN Lian1(
), LIU Yang2, WANG Lukai1, WANG Zungang1(
)
Received:2025-04-26
Online:2025-08-20
Published:2025-09-01
CLC Number:
ZHANG Leilei, XUE Zexu, SUN Lian, LIU Yang, WANG Lukai, WANG Zungang. Metal Halide Perovskite Single Crystal Scintillators for Radiation Detection[J]. Journal of Synthetic Crystals, 2025, 54(8): 1330-1351.
Fig.1 (a) Ball-and-stick model of cubic phase ABX3 perovskite structure; (b) schematic diagram of three-dimensional halide perovskite crystal structure[37]
Fig.3 Scintillation properties of all inorganic three-dimensional perovskite single crystals. (a), (b) CsPbCl3 single crystals[41]; (c), (d) CsPbBr3 single crystals[42]
Fig.4 (a), (b) Temperature-dependent characteristics of the decay kinetics parameters of the MAPbBr3 crystal[43]; (c) temperature-dependent behavior of the light output of MAPbBr3 crystals[43]; (d) integrated XEL of MAPbCl3 single crystals as a function of the dose rate[48]; (e) X-ray imaging of MAPbCl3 single crystals[48]; (f) intensity plot of the redline in fig.(e) at the X-ray image[48]
Fig.5 Scintillation properties of CH3NH3PbBr0.05Cl2.95 crystals[35]. (a) Schematic illustration of CH3NH3PbBr x Cl3-x SCs integrate on the window of SiPM, inset is the side view of the CH3NH3PbBr0.05Cl2.95 SCs scintillator integrated on SiPM MPPC; (b) optical image of CH3NH3PbBr x Cl3-x SCs grown on a glass substrate that excited by a 365 nm laser; (c) scintillation decay time of CH3NH3PbBr x Cl3-x SCs excited with a pulsed X-ray, generated by an accelerator; (d) pulse height spectra acquired with MAPbBr x Cl3-x SCs excited with a 1.4 μCi button-sized 137Cs source
Fig.7 Characterizations of X-ray scintillation properties of Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 single crystals[55].(a) RL spectra of Cs2Ag0.6Na0.4In0.85Bi0.15Cl6, LuAG∶Ce and CsI∶Tl (dose rate: 189 μGyair·s-1, voltage: 50 kV); (b) attenuation efficiency and light yield of Cs2Ag0.6Na0.4In1-y Bi y Cl6 versus Bi3+ content; (c) afterglow curves of Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 and CsI∶Tl; (d) corresponding MTF curves of Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 wafers with different thicknesses; (e) integrated RL intensity of Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 under thermal treatment for 50 h at 85 °C followed by X-ray illumination for another 50 h (dose rate: 12 μGyair·s-1, voltage: 50 kV), inset shows X-ray images of a circuit board acquired at three different stages (0, 50 and 100 h) at a voltage of 50 kV; (f) RL intensity of Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 measured at low-dose rates
Fig.8 (a) Schematic illustrations of crystal structures of 2D and 3D perovskites[64]; (b) schematic of different oriented families of 2D perovskites: <100> plane, <110> plane, <111> plane, cuts along <100>, <110> and <111> directions (grey parts) result in the corresponding different types of 2D perovskites[64]
Fig.9 Crystal structure of 2D perovskites. Illustration of the RP, DJ, and ACI phase homologous series with n=3[75]. (a), (b) RP phase; (c) DJ phase; (d) ACI phase; (e)~(h) molecular structure of long-chain organic spacer cations
Fig.10 Single crystal structure and scintillation properties of 1∶1 Li- (PEA)2PbBr4[76]. (a) Crystal structure and photograph of 1∶1 Li-(PEA)2PbBr4 single crystal. The lengths of black and white bars are 1 cm; gamma-ray pulse-height spectra (b) and gamma-ray excited decay (c) of 1∶1 Li-(PEA)2PbBr4, black line in (b) is the Gaussian fitting for extraction of light yield and energy resolution and in (c) is the three-component exponential decay fitting; (d) alpha particle pulse-height spectra; (e) pulse-shape discrimination (PSD) matrix with the shape indicator on y-axis and the measured energy (electron equivalent) on x-axis, the inset with the green and the blue curves shows the normalized average waveforms from both alpha particle and gamma-ray radiation of 137Cs and 241Am sources, respectively; (f) pulse height spectra measured with graphite-moderated Am-Be neutron source of 1∶1 Li-(PEA)2PbBr4 crystal. The pulse-height spectra of neutron and 137Cs sources are indicated by red and blue dots, respectively
Fig.11 Scintillation properties and radiation imaging properties of (PEA)2PbBr4 single crystal[86]. (a) Photograph of a large-area (PEA)2PbBr4 SC with a diameter of up to 57 mm; (b) RL comparison of the (PEA)2PbBr4 SC, powder, and MC thin film and CsI∶Tl SC under the same X-ray irradiation (237 μGy/s), the thicknesses of the samples were controlled at 0.5 mm; (c) RL decay time comparison of (PEA)2PbBr4 SC and CsI∶Tl; (d) structure of the X-ray imager based on a (PEA)2PbBr4 SC scintillator; (e) photograph of a (PEA)2PbBr4 SC scintillator integrated onto a commercial Si-photodetector array to form an X-ray imaging module; (f) X-ray image of a line chart taken by a (PEA)2PbBr4 SC scintillator and the gray-value profile of the line pairs extracted along the red line
Fig.12 A-site cations, B-site cations with different electronic configurations and X-site halogen anions of 0D luminescent metal halides shown in the in the Periodic Table[91]
Fig.14 Scintillation properties of 0D Pb-based metal halides Cs4PbBr6 and Cs4PbI6[101]. (a) PLQY measurement using an integrating sphere; the inset shows the luminescence of Cs4PbBr6 SCs under UV light (375 nm); (b) scintillation decay time of LYSO(Ce), Cs4PbBr6, and EJ-228 in response to alpha particles from a 241Am isotope source measured with the time-correlated single-photon counting system; (c) dose rate versus integrated RL spectra excited with 40 keV X-rays, inset shows a schematic of the measurement, which consists of Cs4PbBr6 SCs, a photomultiplier tube (PMT) and an X-ray dosimeter; (d) PXRD pattern of Cs4PbI6 SCs; (e) scintillation decay time profile of Cs4PbI6 SCs and other typical ultrafast scintillators to α particles excited from 241Am radioactive source; (f) RL intensity of Cs4PbI6 SCs as a function of dose rate, covering the range from 145 nGyair/s to 3.75 μGy/s
Fig.15 Scintillation properties of Cs3Cu2I5 and Cs3Cu2I5∶Tl single crystals[27,105]. (a) Photographs of Bridgman-grown bulk crystals inside quartz ampoules of intrinsic Cs3Cu2I5 and Cs3Cu2I5∶Tl, the insets show photographs of the crystals under UV illumination (254 nm for Cs3Cu2I5 and 365 nm for Cs3Cu2I5∶Tl); (b) pulse-height spectra of intrinsic Cs3Cu2I5, Cs3Cu2I5∶Tl, and reference NaI∶Tl under 662 keV of 137Cs; (c) light yield nonproportionality of Cs3Cu2I5∶1% Tl crystals with NaI∶Tl as the reference at the same measurement condition; (d) as-grown 7 mm diameter Tl-doped Cs3Cu2I5 crystal ingot, and a 1 mm thick sample under day light and ultraviolet light; (e) comparison of absolute light yield between Tl-doped Cs3Cu2I5∶Tl with undoped Cs3Cu2I5 and other classical scintillators; (f) pulse height spectra of Cs3Cu2I5∶2%Tl single crystal under 137Cs irradiation using a Hamamatsu R6231-100 PMT, the escape peak may come from Cs (Kα ≈31 keV) and I (Kα ≈29 keV) atoms
Fig.16 Scintillation properties of Cs3Cu2I5∶Mn single crystal[107-108]. (a) Comparison of light yields of CsI∶Tl, Cs3Cu2I5 and optimized Cs3Cu2I5∶Mn; (b) RL intensity of Cs3Cu2I5 and 15%Mn versus temperature at an ultra-large range of 77~433 K; (c) RL stabilities of 15%Mn against long-term operation stability under room temperature and 333 K; (d) the light yield of Cs3Cu2I5∶Mn crystal under different ray sources; (e) scintillation decay curves of Cs3Cu2I5∶Mn single-crystal under 137Cs γ-ray excitation; (f) pulse height spectra of Cs3Cu2I5∶Mn single-crystal under 137Cs ray sources using a SiPM (Sensors-J60035)
Fig.17 Pulse height spectra of Cs4SrI6∶Eu 4% (a) and Cs4CaI6∶Eu 4% (b) under 137Cs excitation[114]; (c) 137Cs pulse height spectra measured with Cs4EuBr6 and Cs4EuI6 single crystals coupled to a Hamamatsu R2059 PMT[115]; (d) 137Cs pulse height spectra measured with Cs4EuBr6 and Cs4EuI6 single crystals coupled to a Hamamatsu R6231-100 PMT[115]
Fig.18 Light yield and decay time of Cs2HfCl6 and Cs2HfCl4Br2 single crystals[119,122]. (a) Digital oscilloscope traces for timing measurements of the CHC scintillation response to 662 keV gammas; (b) pulse height spectra acquired with a 137Cs source of a Cs2HfCl6 crystal 0.65 cm3 in size, compared to a standard 1 inch×1 inch NaI(Tl) crystal, both measured with 12 μs shaping time; (c) pulse height spectra of a 0.65 cm3 sample of CHCB acquired with a 137Cs point source, measured with 10 μs shaping time; (d) traces for timing measurements of the CHCB scintillation response to 662 keV gammas, decay time has a fast component (8% of energy) of 0.18 μs and a slow component (92% of energy) of 1.78 μs
| Material | Dimension | Maximum emission/nm | Light yield/(photons·MeV-1) | Energy resolution/(%@662 keV) | Decay time (excited source) | Reference | |
|---|---|---|---|---|---|---|---|
| CsPbCl3 | 3D | 415, 600 | 330 | — | 0.3,5.6 ns (X-ray) | [ | |
| CsPbCl3 | 3D | 440, 600 | ~1 200 | — | 0.39,7.0 ns (X-ray) | [ | |
| CsPbBr3 | 3D | 535, 545 | ~5 000(7 K) | — | ~1 ns (X-ray) | [ | |
| MAPbI3 | 3D | 750 | 1 000, 296 000(10 K) | — | 4.3,52.2 ns (640 nm) | [ | |
| MAPbBr3 | 3D | 550,560 | 1 000, 152 000(10 K) | — | 0.8,5.2,45.4 ns (370 nm) | [ | |
| MAPbBr3 | 3D | 560 | 90 000(77 K); 116 000 (8 K) | — | 0.1,1 ns (X-ray) | [ | |
| MAPbCl3 | 3D | 432 | — | — | — | [ | |
| CH3NH3PbBr0.05Cl2.95 | 3D | ~420 | 18 000 | 10.5 | ~0.14 (X-ray) | [ | |
| Cs2NaTbCl6 | 3D | 548 | 46 600 | — | 0.76, 7.00 ms (548 nm) | [ | |
| Cs2NaEuCl6 | 3D | 593 | 1 250 | — | 0.1, 4.33 ms (612 nm) | [ | |
| Cs2Ag0.6Na0.4In1-y Bi y Cl6 | 3D | 605~652 | 39 000 | — | 1 ns, 2.8 μs (407~800 nm) | [ | |
| PEA2PbBr4 | 2D | 437 | 14 000 | 29 | 11 ns (X-ray) | [ | |
| (C6H5(CH2)2NH3)2Ba0.5Pb0.5Br4 | 2D | 440 | 1 600 | — | 8~9 ns (410 nm) | [ | |
| Li-(PEA)2PbBr4 | 2D | 436 | 11 000 | 12.4 | 11 ns (γ-ray) | [ | |
| BA2PbBr4 | 2D | 413 | 1 510 | — | 2.66 ns (γ-ray) | [ | |
| Cs4PbBr6 | 0D | 525 | — | — | 1.46 ns (α-ray) | [ | |
| Cs3Cu2I5 | 0D | 450 | 29 000 | 3.6 | 967 ns (γ-ray) | [ | |
| Cs3Cu2I5∶Tl | 0D | 530 | 87 000 | 3.4 | 717 ns (550 nm) | [ | |
| Cs3Cu2I5∶Mn | 0D | 445 | 95 772 | 3.79 | 3 ns (γ-ray) | [ | |
| (PPN)2SbCl5 | 0D | 635 | 49 000 | — | 4.1μs (X-ray) | [ | |
| [TPPen]2Mn0.9Zn0.1Br4 | 0D | 515 | 68 000 | — | 296.34 μs (515 nm) | [ | |
| Cs4SrI6∶Eu | 0D | 467 | 62 300 | 3.3 | 1.6 μs (370 nm) | [ | |
| Cs4EuBr6 | 0D | 459 | 78 000 | 4.3 | 3.72 μs (γ-ray) | [ | |
| Cs2HfCl6 | 0D | 400 | 54 000 | 3.3 | 4.37 μs (γ-ray) | [ | |
Table 1 Scintillation properties of metal halide perovskite single crystals of different dimensions
| Material | Dimension | Maximum emission/nm | Light yield/(photons·MeV-1) | Energy resolution/(%@662 keV) | Decay time (excited source) | Reference | |
|---|---|---|---|---|---|---|---|
| CsPbCl3 | 3D | 415, 600 | 330 | — | 0.3,5.6 ns (X-ray) | [ | |
| CsPbCl3 | 3D | 440, 600 | ~1 200 | — | 0.39,7.0 ns (X-ray) | [ | |
| CsPbBr3 | 3D | 535, 545 | ~5 000(7 K) | — | ~1 ns (X-ray) | [ | |
| MAPbI3 | 3D | 750 | 1 000, 296 000(10 K) | — | 4.3,52.2 ns (640 nm) | [ | |
| MAPbBr3 | 3D | 550,560 | 1 000, 152 000(10 K) | — | 0.8,5.2,45.4 ns (370 nm) | [ | |
| MAPbBr3 | 3D | 560 | 90 000(77 K); 116 000 (8 K) | — | 0.1,1 ns (X-ray) | [ | |
| MAPbCl3 | 3D | 432 | — | — | — | [ | |
| CH3NH3PbBr0.05Cl2.95 | 3D | ~420 | 18 000 | 10.5 | ~0.14 (X-ray) | [ | |
| Cs2NaTbCl6 | 3D | 548 | 46 600 | — | 0.76, 7.00 ms (548 nm) | [ | |
| Cs2NaEuCl6 | 3D | 593 | 1 250 | — | 0.1, 4.33 ms (612 nm) | [ | |
| Cs2Ag0.6Na0.4In1-y Bi y Cl6 | 3D | 605~652 | 39 000 | — | 1 ns, 2.8 μs (407~800 nm) | [ | |
| PEA2PbBr4 | 2D | 437 | 14 000 | 29 | 11 ns (X-ray) | [ | |
| (C6H5(CH2)2NH3)2Ba0.5Pb0.5Br4 | 2D | 440 | 1 600 | — | 8~9 ns (410 nm) | [ | |
| Li-(PEA)2PbBr4 | 2D | 436 | 11 000 | 12.4 | 11 ns (γ-ray) | [ | |
| BA2PbBr4 | 2D | 413 | 1 510 | — | 2.66 ns (γ-ray) | [ | |
| Cs4PbBr6 | 0D | 525 | — | — | 1.46 ns (α-ray) | [ | |
| Cs3Cu2I5 | 0D | 450 | 29 000 | 3.6 | 967 ns (γ-ray) | [ | |
| Cs3Cu2I5∶Tl | 0D | 530 | 87 000 | 3.4 | 717 ns (550 nm) | [ | |
| Cs3Cu2I5∶Mn | 0D | 445 | 95 772 | 3.79 | 3 ns (γ-ray) | [ | |
| (PPN)2SbCl5 | 0D | 635 | 49 000 | — | 4.1μs (X-ray) | [ | |
| [TPPen]2Mn0.9Zn0.1Br4 | 0D | 515 | 68 000 | — | 296.34 μs (515 nm) | [ | |
| Cs4SrI6∶Eu | 0D | 467 | 62 300 | 3.3 | 1.6 μs (370 nm) | [ | |
| Cs4EuBr6 | 0D | 459 | 78 000 | 4.3 | 3.72 μs (γ-ray) | [ | |
| Cs2HfCl6 | 0D | 400 | 54 000 | 3.3 | 4.37 μs (γ-ray) | [ | |
| [1] | AOKI M, YAMANE H, SHIMADA M, et al. Conditions for seeded growth of GaN crystals by the Na flux method[J]. Materials Letters, 2002, 56(5): 660-664. |
| [2] | PINSKY L S, POSPISIL S. Timepix-based detectors in mixed-field charged-particle radiation dosimetry applications[J]. Radiation Measurements, 2020, 138: 106229. |
| [3] |
VAN DER ENDE B M, LI L, GODIN D, et al. Stand-off nuclear reactor monitoring with neutron detectors for safeguards and non-proliferation applications[J]. Nature Communications, 2019, 10(1): 1959.
DOI PMID |
| [4] | WHITNEY C M, SOUNDARA-PANDIAN L, JOHNSON E B, et al. Gamma-neutron imaging system utilizing pulse shape discrimination with CLYC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 346-351. |
| [5] |
LI Q L, LIU X L, GU M, et al. Development of ZnO-based nanorod arrays as scintillator layer for ultrafast and high-spatial-resolution X-ray imaging system[J]. Optics Express, 2018, 26(24): 31290-31298.
DOI PMID |
| [6] | LUTZ G. Semiconductor radiation detectors[M]. Berlin: Springer, 2007. |
| [7] | JANA A, CHO S, PATIL S A, et al. Perovskite: scintillators, direct detectors, and X-ray imagers[J]. Materials Today, 2022, 55: 110-136. |
| [8] | WEBER M J. Scintillation: mechanisms and new crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 527(1/2): 9-14. |
| [9] | KAWANO N, SHINOZAKI K, NAKAUCHI D, et al. Scintillation properties of organic-inorganic layered perovskite nanocrystals in glass[J]. Journal of Applied Physics, 2020, 127(21): 213103. |
| [10] |
XU Q, WANG J, SHAO W Y, et al. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection[J]. Nanoscale, 2020, 12(17): 9727-9732.
DOI PMID |
| [11] | MILBRATH B D, PEURRUNG A J, BLISS M, et al. Radiation detector materials: an overview[J]. Journal of Materials Research, 2008, 23(10): 2561-2581. |
| [12] | KNOLL G F. Radiation detection and measurement[M]. 4th ed. New York: John Wiley & Sons, 2010. |
| [13] | VALENTINE J D, WEHE D K, KNOLL G F, et al. Temperature dependence of CsI (Tl) absolute scintillation yield[J]. IEEE Transactions on Nuclear Science, 1993, 40(4): 1267-1274. |
| [14] | LAVAL M, MOSZYŃSKI M, ALLEMAND R, et al. Barium fluoride: inorganic scintillator for subnanosecond timing[J]. Nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176. |
| [15] | VAN LOEF E V D, DORENBOS P, VAN EIJK C W E, et al. High-energy-resolution scintillator: Ce3+ activated LaBr3[J]. Applied Physics Letters, 2001, 79(10): 1573-1575. |
| [16] | MILBRATH B D, CHOATE B J, FAST J E, et al. Comparison of LaBr3∶Ce and NaI(Tl) scintillators for radio-isotope identification devices[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 572(2): 774-784. |
| [17] | REGAN P H. Precision measurement of sub-nanosecond lifetimes of excited nuclear states using fast-timing coincidences with LaBr3(Ce) detectors[J]. Radiation Physics and Chemistry, 2015, 116: 38-42. |
| [18] | XIA M L, YUAN J H, NIU G D, et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability[J]. Advanced Functional Materials, 2020, 30(24): 1910648. |
| [19] | SHU C R, ZHANG C X, YUAN R H, et al. Dynamic monolithic X-ray imager with enhanced performance via strain relaxation in metal-halide scintillators[J]. Journal of Materials Chemistry C, 2025, 13(7): 3399-3407. |
| [20] | YANG K, ZHURAVLEVA M, MELCHER C L. Crystal growth and characterization of CsSr1- x Eu x I3 high light yield scintillators[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2011, 5(1): 43-45. |
| [21] | GRAHAM E, GOODING D, GRUSZKO J, et al. Light yield of Perovskite nanocrystal-doped liquid scintillator[J]. Journal of Instrumentation, 2019, 14(11): P11024. |
| [22] | FANG H H, WANG F, ADJOKATSE S, et al. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications[J]. Light, Science & Applications, 2016, 5(4): e16056. |
| [23] | ZHANG J R, HODES G, JIN Z W, et al. All-inorganic CsPbX3 perovskite solar cells: progress and prospects[J]. Angewandte Chemie International Edition, 2019, 58(44): 15596-15618. |
| [24] | ZHANG J R, BAI D L, JIN Z W, et al. Solar cells: 3d-2D-0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability[J]. Advanced Energy Materials, 2018, 8(15): 1870067. |
| [25] | XIE A Z, NGUYEN T H, HETTIARACHCHI C, et al. Thermal quenching and dose studies of X-ray luminescence in single crystals of halide perovskites[J]. The Journal of Physical Chemistry C, 2018, 122(28): 16265-16273. |
| [26] | HU W, CONG H, HUANG W, et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band[J]. Light, Science & Applications, 2019, 8: 106. |
| [27] | CHENG S L, NIKL M, BEITLEROVA A, et al. Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators[J]. Advanced Optical Materials, 2021, 9(13): 2100460. |
| [28] | ZHOU F G, LI Z Z, LAN W, et al. Halide perovskite, a potential scintillator for X-ray detection[J]. Small Methods, 2020, 4(10): 2000506. |
| [29] | MOSELEY O D I, DOHERTY T A S, PARMEE R, et al. Halide perovskites scintillators: unique promise and current limitations[J]. Journal of Materials Chemistry C, 2021, 9(35): 11588-11604. |
| [30] |
PAN W T, WEI H T, YANG B. Development of halide perovskite single crystal for radiation detection applications[J]. Frontiers in Chemistry, 2020, 8: 268.
DOI PMID |
| [31] | BELSKY A N, CHEVALLIER P, DHEZ P, et al. X-ray excitation of luminescence of scintillator materials in the 7~22 keV region[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 361(1/2): 384-387. |
| [32] | BELSKY A, CHEVALLIER P, MEL’CHAKOV E, et al. Luminescence properties of the RbCaF3 crystal at X-ray excitation[J]. Chemical Physics Letters, 1997, 278(4): 369-372. |
| [33] | LI Y, SHAO W Y, OUYANG X P, et al. Scintillation properties of perovskite single crystals[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17449-17453. |
| [34] | WANG X, ZHAO D W, QIU Y P, et al. PIN diodes array made of perovskite single crystal for X-ray imaging[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2018, 12(10): 1800380. |
| [35] | XU Q, SHAO W Y, LIU J, et al. Bulk organic-inorganic methylammonium lead halide perovskite single crystals for indirect gamma ray detection[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47485-47490. |
| [36] | MØLLER C K. Crystal structure and photoconductivity of Cæsium plumbohalides[J]. Nature, 1958, 182(4647): 1436. |
| [37] | ARYA S, MAHAJAN P, GUPTA R, et al. A comprehensive review on synthesis and applications of single crystal perovskite halides[J]. Progress in Solid State Chemistry, 2020, 60: 100286. |
| [38] | BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693. |
| [39] | LIU Y C, YANG Z, LIU S Z. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications[J]. Advanced Science, 2018, 5(1): 1700471. |
| [40] | VOLOSHINOVSKII A, MIKHAILIK V B, MYAGKOTA S, et al. Exciton luminescence of ionic semiconductors CsPbX3 (X=Cl, Br, I)[J]. Ukrainian Journal of Physics, 1993, 38: 1012-1015. |
| [41] | KOBAYASHI M, OMATA K, SUGIMOTO S, et al. Scintillation characteristics of CsPbCl3 single crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 592(3): 369-373. |
| [42] | MYKHAYLYK V B, KRAUS H, KAPUSTIANYK V, et al. Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures[J]. Scientific Reports, 2020, 10(1): 8601. |
| [43] | MYKHAYLYK V B, KRAUS H, SALIBA M. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures[J]. Materials Horizons, 2019, 6(8): 1740-1747. |
| [44] | KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91. |
| [45] | LIU J, SHAO W, XU Q, et al. Subnanosecond X (γ)-ray sensor based on CH3NH3PbCl3 perovskite single crystals[J]. IEEE Photonics Technology Letters, 2020, 32(11): 635-638. |
| [46] |
BIROWOSUTO M D, CORTECCHIA D, DROZDOWSKI W, et al. X-ray scintillation in lead halide perovskite crystals[J]. Scientific Reports, 2016, 6: 37254.
DOI PMID |
| [47] | NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection[J]. Advanced Optical Materials, 2015, 3(4): 463-481. |
| [48] | XU Q, SHAO W Y, LI Y, et al. High-sensitivity X-ray imaging of a lead halide perovskite single-crystal scintillator[J]. Optics Letters, 2020, 45(2): 355-358. |
| [49] | ZHOU Y, CHEN J, BAKR O M, et al. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications[J]. Chemistry of Materials, 2018, 30(19): 6589-6613. |
| [50] | ZHOU Y, YONG Z J, ZHANG K C, et al. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites[J]. The Journal of Physical Chemistry Letters, 2016, 7(14): 2735-2741. |
| [51] |
SHAO W Y, LI Y, WANG X, et al. Gradient heterostructure perovskite single crystals enable the improvement of radiative recombination for scintillator application[J]. Physical Chemistry Chemical Physics, 2020, 22(13): 6970-6974.
DOI PMID |
| [52] | BLASSE G. New compounds with perovskite-like structures[J]. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993-1003. |
| [53] | KAKAVELAKIS G, GEDDA M, PANAGIOTOPOULOS A, et al. Metal halide perovskites for high-energy radiation detection[J]. Advanced Science, 2020, 7(22): 2002098. |
| [54] | HU Q S, DENG Z Z, HU M C, et al. X-ray scintillation in lead-free double perovskite crystals[J]. Science China Chemistry, 2018, 61(12): 1581-1586. |
| [55] | ZHU W J, MA W B, SU Y R, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light, Science & Applications, 2020, 9: 112. |
| [56] | WANG Z L, XU X M, WANG S H, et al. Cerium doping double perovskite scintillator for sensitive X-ray detection and imaging[J]. Chemistry-A European Journal, 2021, 27(35): 9071-9076. |
| [57] | ZHANG N, ZHANG R, XU X M, et al. X-ray-activated long afterglow double-perovskite scintillator for detection and extension imaging[J]. Advanced Optical Materials, 2023, 11(16): 2300187. |
| [58] | GE X Y, ZHANG Q, FEI T, et al. Designing polychromatic luminescence in Mn2+-doped Cs2NaLuCl6 double perovskite crystals via energy transfer engineering for optical thermometry and X-ray imaging[J]. Inorganic Chemistry, 2025, 64(6): 3038-3047. |
| [59] | LIU X D, WANG Q, CHENG Z Q, et al. Solution-phase growth of organolead halide perovskite nanowires and nanoplates assisted by long-chain alkylammonium and solvent polarity[J]. Materials Letters, 2017, 206: 75-79. |
| [60] | SHENG X X, CHEN G Y, WANG C, et al. Polarized optoelectronics of CsPbX3 (X = Cl, Br, I) perovskite nanoplates with tunable size and thickness[J]. Advanced Functional Materials, 2018, 28(19): 1800283. |
| [61] |
ZHOU N, SHEN Y H, LI L, et al. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells[J]. Journal of the American Chemical Society, 2018, 140(1): 459-465.
DOI PMID |
| [62] | AHMAD S, FU P, YU S W, et al. Dion-jacobson phase 2D layered perovskites for solar cells with ultrahigh stability[J]. Joule, 2019, 3(3): 794-806. |
| [63] |
YUAN M J, QUAN L N, COMIN R, et al. Perovskite energy funnels for efficient light-emitting diodes[J]. Nature Nanotechnology, 2016, 11(10): 872-877.
DOI PMID |
| [64] | ZHANG F, LU H P, TONG J H, et al. Advances in two-dimensional organic-inorganic hybrid perovskites[J]. Energy & Environmental Science, 2020, 13(4): 1154-1186. |
| [65] | ORTIZ-CERVANTES C, CARMONA-MONROY P, SOLIS-IBARRA D. Two-dimensional halide perovskites in solar cells: 2D or not 2D?[J]. ChemSusChem, 2019, 12(8): 1560-1575. |
| [66] | CHO J, MATHEW P S, DUBOSE J T, et al. Photoinduced halide segregation in ruddlesden-popper 2D mixed halide perovskite films[J]. Advanced Materials, 2021, 33(48): 2105585. |
| [67] | ZHANG X, REN X D, LIU B, et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping[J]. Energy & Environmental Science, 2017, 10(10): 2095-2102. |
| [68] | SMITH I C, HOKE E T, SOLIS-IBARRA D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition, 2014, 53(42): 11232-11235. |
| [69] | THRITHAMARASSERY GANGADHARAN D, MA D L. Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells[J]. Energy & Environmental Science, 2019, 12(10): 2860-2889. |
| [70] |
MAO L L, KE W J, PEDESSEAU L, et al. Hybrid dion-jacobson 2D lead iodide perovskites[J]. Journal of the American Chemical Society, 2018, 140(10): 3775-3783.
DOI PMID |
| [71] |
NAZARENKO O, KOTYRBA M R, WÖRLE M, et al. Luminescent and photoconductive layered lead halide perovskite compounds comprising mixtures of cesium and guanidinium cations[J]. Inorganic Chemistry, 2017, 56(19): 11552-11564.
DOI PMID |
| [72] | MAO L L, STOUMPOS C C, KANATZIDIS M G. Two-dimensional hybrid halide perovskites: principles and promises[J]. Journal of the American Chemical Society, 2019, 141(3): 1171-1190. |
| [73] | WANG N N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nature Photonics, 2016, 10(11): 699-704. |
| [74] | CHENG L, JIANG T, CAO Y, et al. Multiple-quantum-well perovskites for high-performance light-emitting diodes[J]. Advanced Materials, 2020, 32(15): 1904163. |
| [75] | HAN M Y, XIAO Y R, ZHOU C, et al. Recent advances on two-dimensional metal halide perovskite X-ray detectors[J]. Materials Futures, 2023, 2(1): 012104. |
| [76] | XIE A Z, HETTIARACHCHI C, MADDALENA F, et al. Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection[J]. Communications Materials, 2020, 1(1): 37. |
| [77] | KONDO T, IWAMOTO S, HAYASE S, et al. Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4[J]. Solid State Communications, 1998, 105(8): 503-506. |
| [78] | SHIBUYA K, KOSHIMIZU M, ASAI K, et al. Quantum confinement for large light output from pure semiconducting scintillators[J]. Applied Physics Letters, 2004, 84(22): 4370-4372. |
| [79] | VAN EIJK C W E, DE HAAS J T M, RODNYI P A, et al. Scintillation properties of a crystal of (C6H5 (CH2)2 NH3)2PbBr4[C]//2008 IEEE Nuclear Science Symposium Conference Record. October 19-25, 2008, Dresden, Germany. IEEE, 2008: 3525-3528. |
| [80] |
KAWANO N, KOSHIMIZU M, OKADA G, et al. Scintillating organic-inorganic layered perovskite-type compounds and the gamma-ray detection capabilities[J]. Scientific Reports, 2017, 7(1): 14754.
DOI PMID |
| [81] | KAWANO N, NAKAUCHI D, KIMURA H, et al. Photoluminescence and scintillation properties of (C6H5C2H4NH3)2Pb1- x Mn x Br4[J]. Japanese Journal of Applied Physics, 2019, 58(8): 082004. |
| [82] | NAKAUCHI D, KAWANO N, KAWAGUCHI N, et al. Luminescence and scintillation properties of (C6H5(CH2)2NH3)2(Ba, Pb)Br4 with self-organized bi-dimensional quantum-well structures[J]. Japanese Journal of Applied Physics, 2020, 59: SCCB04. |
| [83] | AKATSUKA M, KAWANO N, KATO T, et al. Development of scintillating 2D quantum confinement materials: (C6H5C2H4NH3)2Pb1- x Sr x Br4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161372. |
| [84] | WEI J H, LIAO J F, WANG X D, et al. All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission[J]. Matter, 2020, 3(3): 892-903. |
| [85] | PELLEGRI L, BIZZARRI E, BLASI N, et al. Performances of a 1″× 1″ Cs2LiYCl6 scintillator detector; proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference[C]. IEEE, 2013. |
| [86] | JIA B X, CHU D P, LI N, et al. Airflow-controlled crystallization for a multi-inch 2D halide perovskite single-crystal scintillator for fast high-resolution X-ray imaging[J]. ACS Energy Letters, 2023, 8(1): 590-599. |
| [87] |
JIN T, LIU Z, LUO J J, et al. Self-wavelength shifting in two-dimensional perovskite for sensitive and fast gamma-ray detection[J]. Nature Communications, 2023, 14(1): 2808.
DOI PMID |
| [88] | WAN P Y, JIN T, GAO R L, et al. 2D perovskite neutron scintillators with nanosecond time resolution and linearity energy response[J]. Advanced Functional Materials, 2024, 34(4): 2308263. |
| [89] | XIA M L, XIE Z X, WANG H Q, et al. Sub-nanosecond 2D perovskite scintillators by dielectric engineering[J]. Advanced Materials, 2023, 35(18): 2211769. |
| [90] | ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids[J]. Materials Science and Engineering: R: Reports, 2019, 137: 38-65. |
| [91] |
LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides[J]. Chemical Society Reviews, 2021, 50(4): 2626-2662.
DOI PMID |
| [92] | SAIDAMINOV M I, MOHAMMED O F, BAKR O M. Low-dimensional-networked metal halide perovskites: the next big thing[J]. ACS Energy Letters, 2017, 2(4): 889-896. |
| [93] | ZHOU C K, LIN H R, SHI H L, et al. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission[J]. Angewandte Chemie International Edition, 2018, 57(4): 1021-1024. |
| [94] | MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation[J]. Journal of the American Chemical Society, 2019, 141(25): 9764-9768. |
| [95] |
ZHOU C K, LIN H R, WORKU M, et al. Blue emitting single crystalline assembly of metal halide clusters[J]. Journal of the American Chemical Society, 2018, 140(41): 13181-13184.
DOI PMID |
| [96] | ZHOU J, LI M Z, NING L X, et al. Broad-band emission in a zero-dimensional hybrid organic [PbBr6] trimer with intrinsic vacancies[J]. The Journal of Physical Chemistry Letters, 2019, 10(6): 1337-1341. |
| [97] | LI S R, LUO J J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1999-2007. |
| [98] | ALMUTLAQ J, YIN J, MOHAMMED O F, et al. The benefit and challenges of zero-dimensional perovskites[J]. The Journal of Physical Chemistry Letters, 2018, 9(14): 4131-4138. |
| [99] | KRISHNAMURTHY S, NAPHADE R, MIR W J, et al. Molecular and self-trapped excitonic contributions to the broadband luminescence in diamine-based low-dimensional hybrid perovskite systems[J]. Advanced Optical Materials, 2018, 6(20): 1800751. |
| [100] | LI Y, SHAO W Y, CHEN L, et al. Lead-halide Cs4PbBr6 single crystals for high-sensitivity radiation detection[J]. NPG Asia Materials, 2021, 13: 40. |
| [101] | LI Y, CHEN L, GAO R L, et al. Nanosecond and highly sensitive scintillator based on all-inorganic perovskite single crystals[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1489-1495. |
| [102] | WU X, ZHOU Q, WU H D, et al. Cs4PbBr6- x Cl x single crystals with tunable emission for X-ray detection and imaging[J]. The Journal of Physical Chemistry C, 2021, 125(48): 26619-26626. |
| [103] | JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure[J]. Advanced Materials, 2018, 30(43): 1804547. |
| [104] | CHENG S L, BEITLEROVA A, KUCERKOVA R, et al. Zero-dimensional Cs3Cu2I5 perovskite single crystal as sensitive X-ray and γ-ray scintillator[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2020, 14(11): 2000374. |
| [105] | YUAN D S. Air-stable bulk halide single-crystal scintillator Cs3Cu2I5 by melt growth: intrinsic and Tl doped with high light yield[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38333-38340. |
| [106] | WANG Q, ZHOU Q, NIKL M, et al. Highly resolved X-ray imaging enabled by In(I) doped perovskite-like Cs3Cu2I5 single crystal scintillator[J]. Advanced Optical Materials, 2022, 10(11): 2200304. |
| [107] | LI X M, CHEN J X, YANG D D, et al. Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery[J]. Nature Communications, 2021, 12(1): 3879. |
| [108] | YAO Q, LI J M, LI X S, et al. Achieving a record scintillation performance by micro-doping a heterovalent magnetic ion in Cs3Cu2I5 single-crystal[J]. Advanced Materials, 2023, 35(44): 2304938. |
| [109] | GAO L, LI Q, SUN J L, et al. Gamma-ray irradiation stability of zero-dimensional Cs3Cu2I5 metal halide scintillator single crystals[J]. The Journal of Physical Chemistry Letters, 2023, 14(5): 1165-1173. |
| [110] | SU B B, JIN J C, HAN K, et al. Ceramic wafer scintillation screen by utilizing near-unity blue-emitting lead-free metal halide (C8H20N)2Cu2Br4[J]. Advanced Functional Materials, 2023, 33(5): 2210735. |
| [111] | HE Q, ZHOU C, XU L, et al. Highly stable organic antimony halide crystals for X-ray scintillation[J]. ACS Materials Letters, 2020, 2(6): 633-638. |
| [112] | XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide[J]. Nature Communications, 2020, 11(1): 4329. |
| [113] | JIN J C, HAN K, HU Y K, et al. Zn2+ doping in organic manganese(II) bromide hybrid scintillators toward enhanced light yield for X-ray imaging[J]. Advanced Optical Materials, 2023, 11(14): 2300330. |
| [114] | STAND L, ZHURAVLEVA M, CHAKOUMAKOS B, et al. Crystal growth and scintillation properties of Eu2+ doped Cs4CaI6 and Cs4SrI6[J]. Journal of Crystal Growth, 2018, 486: 162-168. |
| [115] | WU Y T, HAN D, CHAKOUMAKOS B C, et al. Zero-dimensional Cs4EuX6 (X=Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy[J]. Journal of Materials Chemistry C, 2018, 6(25): 6647-6655. |
| [116] | SUGAWARA K, KOSHIMIZU M, YANAGIDA T, et al. Luminescence and scintillation properties of Ce-doped Cs2ZnCl4 crystals[J]. Optical Materials, 2015, 41: 53-57. |
| [117] | ZHOU Y C, ZHOU Q, NIU X W, et al. Compositional engineering of doped zero-dimensional zinc halide blue emitters for efficient X-ray scintillation[J]. Inorganic Chemistry Frontiers, 2022, 9(12): 2987-2996. |
| [118] | SHONDE T B, CHAABAN M, LIU H, et al. Molecular sensitization enabled high performance organic metal halide hybrid scintillator[J]. Advanced Materials, 2023, 35(23): 2301612. |
| [119] | BURGER A, ROWE E, GROZA M, et al. Cesium hafnium chloride: a high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy[J]. Applied Physics Letters, 2015, 107(14): 143505. |
| [120] | SAEKI K, FUJIMOTO Y, KOSHIMIZU M, et al. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6[J]. Applied Physics Express, 2016, 9(4): 42602. |
| [121] | LAM S, GUGUSCHEV C, BURGER A, et al. Crystal growth and scintillation performance of Cs2HfCl6 and Cs2HfCl4Br2[J]. Journal of Crystal Growth, 2018, 483: 121-124. |
| [122] | ROWE E, GOODWIN W B, BHATTACHARYA P, et al. Preparation, structure and scintillation of cesium hafnium chloride bromide crystals[J]. Journal of Crystal Growth, 2019, 509: 124-128. |
| [123] | WATANABE K, KOSHIMIZU M, YANAGIDA T, et al. Luminescence and scintillation properties of La- and La, Ag-doped CsPbCl3 single crystals[J]. Japanese Journal of Applied Physics, 2016, 55(2S): 02BC20. |
| [1] | YANG Zhi, GU Linyuan, WANG Dawei, XU Xuhui, SONG Jizhong. X-Ray Radiation Stability of CsPbBr3 Perovskite Quantum Dot Scintillators [J]. Journal of Synthetic Crystals, 2025, 54(7): 1265-1271. |
| [2] | JIA Yuzhen, LI Zhenglong, YAN Xinlong, WANG Ruichen, PENG Chen, DUAN Weiheng, YANG Weihu, HE Weimin, SONG Baijun, CHENG Yao, FAN Xiaoyu, YANG Fan. Investigation of Crystal Growth and Scintillation Properties of 0-Dimensional Perovskite Cs3CdBr5 [J]. Journal of Synthetic Crystals, 2025, 54(7): 1221-1228. |
| [3] | HUI Juan, YANG Yang. Quantum-Cutting Ytterbium Ion (Yb3+)-Doped Perovskite Nanocrystals: Synthesis and Novel Applications in Multi-Energy X-Ray Imaging [J]. Journal of Synthetic Crystals, 2025, 54(7): 1121-1131. |
| [4] | ZHANG Yue, XIAO Jiawen. Research Progress of Thermally Activated Delayed Fluorescent Scintillators [J]. Journal of Synthetic Crystals, 2025, 54(7): 1175-1188. |
| [5] | LIU Wenyu, QIAN Lu, LI Fangjian, PAN Shangke, SUN Zhigang, CHEN Hongbing, PAN Jianguo. Growth and Luminescence Properties of Li2MoO4 Crystal by Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(5): 793-800. |
| [6] | ZHAO Meili, SUN Taofeng, GAO Fan, GONG Hongying, ZANG Xiaowei, GUI Qiang, ZHANG Chunsheng. Preparation and Properties of Large Size Cs2LiYCl6:Ce Crystal [J]. Journal of Synthetic Crystals, 2025, 54(4): 553-559. |
| [7] | YANG Xiaolong, TANG Huili, ZHANG Chaoyi, SUN Peng, HUANG Lin, CHEN Long, XU Jun, LIU Bo. Growth and Spectral Properties of Bi-Doped β-Ga2O3 Single Crystal by Optical Floating Zone Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 202-211. |
| [8] | TANG Jia, SUN Zhicheng, ZHANG Zubang, LUO Hui. Research Progress on the Growth of Large-Sized CsPbBr3 Crystals by the Melt Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 1-10. |
| [9] | DONG Yujuan, LIU Zhaojiang, ZHU Qirui. Preparation of Yellow-Emitting Pure Zn3V2O8 Phosphors and Its Optical Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1416-1421. |
| [10] | CHEN Xinxin, HAN Jiali, PAN Jianguo. Growth and Luminescence Properties of Large Size and High Quality CsCu2I3 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1106-1111. |
| [11] | YIN Jie, ZHANG Xiaoqiang, CHEN Can, PAN Jianguo. Growth and Scintillation Properties of Cerium-Doped Cs2BaBr4 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 760-765. |
| [12] | HOU Yueyun, LIU Jianqiang, YANG Lei, YAN Jinli, ZHANG Mingrong, LIU Xiaoyang. Scintillation Properties and Irradiation Damage of Large Size BaF2:Y Scintillation Crystals Grown by Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(4): 584-589. |
| [13] | ZHAO Meili, SUN Taofeng, GUI Qiang, ZHANG Chunsheng, WANG Shuyin, LIU Shan, LI Xinqiao, AN Zhenghua, YANG Sheng. Preparation and Properties of Large Size LaBr3 Crystal Packages for Gravitational Wave Gamma-Ray Burst Detection [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 414-420. |
| [14] | WU Zhonghang, SUN Bin, HUANG Gang, QU Qian, TANG Yiwen, SUN Jiuai. Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 196-207. |
| [15] | WANG Haili, ZHOU Nanhao, XU Wanfen, ZHANG Wei, LI Huanying, HAN Jiahong, CHEN Jianrong. Growth and Properties Study of LaBr3∶Ce,Sr Scintillation Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(12): 2161-2166. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS