Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (7): 1121-1131.DOI: 10.16553/j.cnki.issn1000-985x.2025.0051
• Reviews • Previous Articles Next Articles
Received:2025-03-17
Online:2025-07-20
Published:2025-07-30
CLC Number:
HUI Juan, YANG Yang. Quantum-Cutting Ytterbium Ion (Yb3+)-Doped Perovskite Nanocrystals: Synthesis and Novel Applications in Multi-Energy X-Ray Imaging[J]. Journal of Synthetic Crystals, 2025, 54(7): 1121-1131.
Fig.2 Quantum-cutting luminescence mechanism of Yb3+-doped CsPbCl3 NCs. (a) Two-step energy transfer mechanism[7]; (b) one-step energy transfer mechanism, doping with Yb3+ ions introduces shallow defect level, forming charge-neutral Yb3+-VPb-Yb3+ defect complex[5]; (c) one-step energy transfer mechanism, charge-neutral Yb3+-VPb-Yb3+ defect complex exhibiting “right-angle” configuration[15]; (d) atomic-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDS) mapping of Yb3+-doped CsPbCl3 NCs[18]
Fig.3 Applications of quantum-cutting Yb3+-doped CsPbCl3 NCs in optoelectronic devices. (a) Integrated application on the surface of a silicon solar cell[4]; (b) quantum-cutting luminescent solar concentrator device[10]; (c) electroluminescence spectrum of Yb3+-doped CsPbCl3 NCs[9]; (d) phosphor-converted near-infrared light-emitting diode (pc-NIR-LED) device[11]; (e) practical application of the pc-NIR-LED device in night vision illumination[11]
Fig.4 Performance characterization of quantum-cutting Yb3+-doped CsPbCl3 scintillators and their applications in X-ray imaging. (a) Absorption and emission spectra[29]; (b) radioluminescence (RL) spectrum and light yield of Yb3+-doped CsPbCl3 powder scintillator[29]; (c) imaging demonstration[29]; (d) light yield comparison between Yb3+-doped CsPbCl3 single crystal scintillator and other common scintillators[30]; (e) schematic of single-pixel imaging setup and corresponding imaging results versus original object for Yb3+-doped CsPbCl3 single crystal scintillator[30]; (f) RL of Yb3+-doped CsPbCl3 nanocrystal scintillator[31]; (g) spatial resolution test[31]; (h) imaging results based on Yb3+-doped CsPbCl3 nanocrystal scintillator film[31]
Fig.5 Schematic of energy-integrated and multi-energy X-ray imaging system. (a) A traditional energy-integrated X-ray imaging system[36]; (b) schematic of a large-area multi-energy flat-panel X-ray imaging system based on stacked multilayer scintillators[36]; (c) structure drawing of a bone-muscle test model (left), size: 30 mm×30 mm×3 mm, and dual-energy X-ray imaging (right)[36]; (d) dual-energy X-ray images of a moth, a beetle, and a leaf based on the sandwich structure scintillator: (i) Bright-field image, (ii) stacked image, (iii)~(iv) decomposed the low- and high-energy image, (v) color reconstructed image[44]
Fig.6 Multi-energy X-ray imaging based on quantum-cutting stacked scintillator[31]. Schematic of a traditional stacked scintillator (a) and quantum-cutting stacked scintillator (b) X-ray imaging systems; (c) RL and PLE spectra of three scintillators (CsPbCl3∶Yb3+, CsAgCl2, and Cs3Cu2I5);(d) relationship between thickness and absorption efficiency of the three-layer stacked scintillators at different X-ray energies; (e) RL intensity of the three-layer stacked scintillator under different X-ray tube voltages; (f) schematic diagram of a concept demonstration experiment for material discrimination; (g) materials-energy dependent calibration curves for iron (Fe), aluminum (Al), and polymethyl methacrylate (PMMA); (h) demonstration of material identification utilizing quantum-cutting stacked scintillator
| [1] | PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX₃, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. |
| [2] | CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93. |
| [3] | SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties[J]. Chemical Reviews, 2019, 119(5): 3296-3348. |
| [4] | ZHOU D L, LIU D L, PAN G C, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells[J]. Advanced Materials, 2017, 29(42): 1704149. |
| [5] | MILSTEIN T J, KROUPA D M, GAMELIN D R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals[J]. Nano Letters, 2018, 18(6): 3792-3799. |
| [6] | DEXTER D L. Possibility of luminescent quantum yields greater than unity[J]. Physical Review, 1957, 108(3): 630-633. |
| [7] | PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties[J]. Nano Letters, 2017, 17(12): 8005-8011. |
| [8] | ZHANG X T, ZHANG Y, ZHANG X Y, et al. Yb3+ and Yb3+/Er3+ doping for near-infrared emission and improved stability of CsPbCl3 nanocrystals[J]. Journal of Materials Chemistry C, 2018, 6(37): 10101-10105. |
| [9] | SHEN X Y, WANG Z Y, TANG C Y, et al. Near-infrared LEDs based on quantum cutting-activated electroluminescence of ytterbium ions[J]. Nano Letters, 2023, 23(1): 82-90. |
| [10] | LUO X, DING T, LIU X, et al. Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals[J]. Nano Letters, 2019, 19(1): 338-341. |
| [11] | HUANG H, LI R F, JIN S L, et al. Ytterbium-doped CsPbCl3 quantum cutters for near-infrared light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34561-34571. |
| [12] | JING Y, LOW A K Y, LIU Y, et al. Stable and highly emissive infrared Yb-doped perovskite quantum cutters engineered by machine learning[J]. Advanced Materials, 2024, 36(44): 2405973. |
| [13] | MIR W J, MAHOR Y, LOHAR A, et al. Postsynthesis doping of Mn and Yb into CsPbX3 (X=Cl, Br, or I) perovskite nanocrystals for downconversion emission[J]. Chemistry of Materials, 2018, 30(22): 8170-8178. |
| [14] | FANG X C, CHEN Z, Mandy H M L, et al. Photo-induced synthesis of ytterbium and manganese-doped CsPbCl3 nanocrystals for visible to near-infrared photoluminescence with negative thermal quenching[J]. Advanced Science, 2025, 12(4): 2408927. |
| [15] | LI X Y, DUAN S, LIU H C, et al. Mechanism for the extremely efficient sensitization of Yb3+ luminescence in CsPbCl3 nanocrystals[J]. The Journal of Physical Chemistry Letters, 2019, 10(3): 487-492. |
| [16] | ZHOU L, LIU T R, ZHENG J, et al. Dual-emission and two charge-transfer states in ytterbium-doped cesium lead halide perovskite solid nanocrystals[J]. The Journal of Physical Chemistry C, 2018, 122(47): 26825-26834. |
| [17] | MA J P, CHEN Y M, ZHANG L M, et al. Insights into the local structure of dopants, doping efficiency, and luminescence properties of lanthanide-doped CsPbCl3 perovskite nanocrystals[J]. Journal of Materials Chemistry C, 2019, 7(10): 3037-3048. |
| [18] | XU W, LIU J M, DONG B, et al. Atomic-scale imaging of ytterbium ions in lead halide perovskites[J]. Science Advances, 2023, 9(35): eadi7931. |
| [19] | ZHU W J, MA W B, SU Y R, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light, Science & Applications, 2020, 9: 112. |
| [20] | MA W B, SU Y R, ZHANG Q S, et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging[J]. Nature Materials, 2022, 21(2): 210-216. |
| [21] | JIANG T M, MA W B, ZHANG H, et al. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications[J]. Advanced Functional Materials, 2021, 31(14): 2009973. |
| [22] | HEO J H, SHIN D H, PARK J K, et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging[J]. Advanced Materials, 2018, 30(40): 1801743. |
| [23] | ZHANG Y H, SUN R J, OU X Y, et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens[J]. ACS Nano, 2019, 13(2): 2520-2525. |
| [24] | GANDINI M, VILLA I, BERETTA M, et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators[J]. Nature Nanotechnology, 2020, 15(6): 462-468. |
| [25] | ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Advanced Materials, 2021, 33(40): 2102529. |
| [26] | MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Advanced Science, 2021, 8(15): 2003728. |
| [27] | WU X C, GUO Z, ZHU S, et al. Ultrathin, transparent, and high density perovskite scintillator film for high resolution X-ray microscopic imaging[J]. Advanced Science, 2022, 9(17): 2200831. |
| [28] | WANG B Q, PENG J L, YANG X, et al. Template assembled large-size CsPbBr3 nanocomposite films toward flexible, stable, and high-performance X-Ray scintillators[J]. Laser & Photonics Reviews, 2022, 16(7): 2100736. |
| [29] | DAGNALL K A, CONLEY A M, YOON L U, et al. Ytterbium-doped cesium lead chloride perovskite as an X-ray scintillator with high light yield[J]. ACS Omega, 2022, 7(24): 20968-20974. |
| [30] | ZI L, SONG J, WANG N, et al. X-ray quantum cutting scintillator based on CsPbCl x Br3- x ∶Yb3+ single crystals[J]. Laser & Photonics Reviews, 2023, 17(5): 2200852. |
| [31] | HUI J, RAN P, SU Y R, et al. Stacked scintillators based multispectral X-ray imaging featuring quantum-cutting perovskite scintillators with 570 nm absorption-emission shift[J]. Advanced Materials, 2025, 37(10): 2416360. |
| [32] | YANG B, YIN L X, NIU G D, et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator[J]. Advanced Materials, 2019, 31(44): 1904711. |
| [33] | LIAN L Y, ZHENG M Y, ZHANG W Z, et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons[J]. Advanced Science, 2020, 7(11): 2000195. |
| [34] | HUI J, RAN P, SU Y R, et al. High-resolution X-ray imaging based on solution-phase-synthesized Cs3Cu2I5 scintillator nanowire array[J]. The Journal of Physical Chemistry C, 2022, 126(30): 12882-12888. |
| [35] | RAN P, CHEN X Y, CHEN Z, et al. Metal halide CsCu2I3 flexible scintillator with high photodiode spectral compatibility for X-ray cone beam computed tomography (CBCT) imaging[J]. Laser & Photonics Reviews, 2024, 18(1): 2300743. |
| [36] | RAN P, YANG L R, JIANG T M, et al. Multispectral large-panel X-ray imaging enabled by stacked metal halide scintillators[J]. Advanced Materials, 2022, 34(42): 2205458. |
| [37] | SU Y R, RAN P, HUI J, et al. Organic and inorganic metal halide tandem scintillator for dual-energy flat-panel X-ray imaging[J]. The Journal of Physical Chemistry Letters, 2023, 14(26): 6179-6186. |
| [38] | RAN P, YAO Q R, HUI J, et al. Multi-energy X-ray linear-array detector enabled by the side-illuminated metal halide scintillator[J]. Laser & Photonics Reviews, 2024, 18(1): 2300587. |
| [39] | PANG J C, ZHAO S, DU X Y, et al. Vertical matrix perovskite X-ray detector for effective multi-energy discrimination[J]. Light, Science & Applications, 2022, 11(1): 105. |
| [40] | SHIKHALIEV P M. Tilted angle CZT detector for photon counting/energy weighting X-ray and CT imaging[J]. Physics in Medicine and Biology, 2006, 51(17): 4267-4287. |
| [41] | SHIKHALIEV P M, FRITZ S G, CHAPMAN J W. Photon counting multienergy X-ray imaging: effect of the characteristic X rays on detector performance[J]. Medical Physics 2009, 36 (11): 5107-5119 |
| [42] | FLOHR T, PETERSILKA M, HENNING A, et al. Photon-counting CT review[J]. Physica Medica, 2020, 79: 126-136. |
| [43] | WU W W, HU D L, AN K, et al. A high-quality photon-counting CT technique based on weight adaptive total-variation and image-spectral tensor factorization for small animals imaging[J]. IEEE Transactions on Instrumentation Measurement, 2021, 70: 3026804. |
| [44] | SHAO W Y, HE T Y, WANG J X, et al. Transparent organic and metal halide tandem scintillators for high-resolution dual-energy X-ray imaging[J]. ACS Energy Letters, 2023, 8(6): 2505-2512. |
| [45] | HU X D, LUO S H, LENG J, et al. Density-discriminating chromatic X-ray imaging based on metal halide nanocrystal scintillators[J]. Science Advances, 2023, 9(37): eadh5081. |
| [46] | HE T Y, SHAO W Y, YIN J, et al. Multi-energy X-ray imaging enabled by ΔE-E telescope scintillator[J]. Matter, 2024, 7(7): 2521-2535. |
| [1] | CHEN Sixian, XU Le, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties Modulation of I- Doped Cs3Bi2Br9 Crystals [J]. Journal of Synthetic Crystals, 2025, 54(7): 1282-1288. |
| [2] | ZHANG Feiyang, YAN Feng, LOU Yue, LI Bojiang, LI Jie. Preparation and Electrical Properties of Co Doped Na0.5Bi4.5Ti4O15 Bismuth-Layered Lead-Free Piezoelectric Ceramics [J]. Journal of Synthetic Crystals, 2025, 54(6): 1061-1067. |
| [3] | SONG Zhicheng, ZHANG Bo, ZHANG Chunfu, QU Xiaoyong, NI Yufeng, GAO Jiaqing. Preparation Process of Emitter for p-Type TBC Cells [J]. Journal of Synthetic Crystals, 2025, 54(5): 857-863. |
| [4] | XU Huakai, LAI Guoxia, SU Kunren, XU Xiangfu, CHE Youda, HE Yan, CHEN Xingyuan. First-Principles Study of Multiferroic Properties of V and Cr Doped TiOCl2 Monolayer [J]. Journal of Synthetic Crystals, 2025, 54(4): 629-635. |
| [5] | MIN Yueqi, XIE Wenqin, XIE Liang, AN Kang. Optoelectronic Properties of CsPbX3 (X=Cl, Br, I) Regulated by Pd Doping [J]. Journal of Synthetic Crystals, 2025, 54(4): 605-616. |
| [6] | SHU Jian, LI Shengnan, JIANG Yi, JIA Zhenguo. Afterglow Performance Optimization of Dy3+ Doped SrAl2O4:Tb3+ Afterglow Luminescent Phosphors [J]. Journal of Synthetic Crystals, 2025, 54(4): 652-662. |
| [7] | SHAO Meifang, FENG Jinyang, HOU Tianjiang, MA Xiao. Properties of Gadolinium Gallium Garnet Substituded with Different Stoichiometric Ratios of Ca2+/Mg2+/Zr4+ [J]. Journal of Synthetic Crystals, 2025, 54(4): 543-552. |
| [8] | MENG Xiaoyan, GAN Xin, WANG Chunyang, ZHU Yaoxian, YANG Liusai, WU Lidan, DONG Hongxia. Design, Synthesis and Luminescent Properties of CaMoO4:Dy3+/Sm3+ White Phosphors [J]. Journal of Synthetic Crystals, 2025, 54(4): 663-673. |
| [9] | ZHANG Jiaqi, LIN Xueling, TIAN Wenhu, MA Wenjie, ZHANG Xiu, MA Xiaowei, ZHU Qiaoping, HAO Rui, PAN Fengchun. Effect of Strain on Optical Properties of Si Doped A-TiO2 Studied by the First-Principles [J]. Journal of Synthetic Crystals, 2025, 54(4): 617-628. |
| [10] | LI Qi, FU Bo, YU Bowen, ZHAO Hao, LIN Na, JIA Zhitai, ZHAO Xian, TAO Xutang. First-Principle Study on the Interaction Between Al/In Doping and (100) Twins in β-Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(3): 371-377. |
| [11] | HAN Yu, JIAO Teng, YU Han, SAI Qinglin, CHEN Duanyang, LI Zhen, LI Yihan, ZHANG Zhao, DONG Xin. Effect of Substrate Crystal Planes on the Properties of Homoepitaxial n-Ga2O3 Thin Films Grown by MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 438-444. |
| [12] | SUN Rujun, ZHANG Jinghui, LI Yifan, HAO Yue, ZHANG Jincheng. Review on Mg Doping of Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(3): 361-370. |
| [13] | YAN Yuchao, WANG Cheng, LU Changcheng, LIU Yingying, XIA Ning, JIN Zhu, ZHANG Hui, YANG Deren. Growth of 2-Inch Fe-Doped β-Ga2O3 Single Crystal with High Resistance and Properties of (010) Substrates [J]. Journal of Synthetic Crystals, 2025, 54(2): 197-201. |
| [14] | ZHANG Ziqi, YANG Zhenni, KUANG Siliang, WEI Shenglong, XU Wenjing, CHEN Duanyang, QI Hongji, ZHANG Hongliang. Electronic Transport Properties of Sn-Doped β-Ga2O3 (010) Thin Films Grown by MBE Homoepitaxial Growth [J]. Journal of Synthetic Crystals, 2025, 54(2): 244-254. |
| [15] | YAO Suhao, ZHANG Maolin, JI Xueqiang, YANG Lili, LI Shan, GUO Yufeng, TANG Weihua. Mist CVD Grown High-Phase-Purity α-Ga2O3 and Its Photoresponse Performance [J]. Journal of Synthetic Crystals, 2025, 54(2): 233-243. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS