[1] RODRIGUES A S, JORGE M E M, CIRACO L, et al. Perovskites (La, Ba)(Fe, Ti)O3:AO7 photocatalysis under visible light[J]. Reviews on Advanced Materials Science, 2020, 59(1): 151-159.
[2] YE L M, LU P, CHEN X B, et al. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst[J]. Applied Catalysis B: Environmental, 2020, 277: 119257.
[3] SINGH M, SINHA I. Halide perovskite-based photocatalysis systems for solar-driven fuel generation[J]. Solar Energy, 2020, 208: 296-311.
[4] ZHANG F B, WANG X M, LIU H N, et al. Recent advances and applications of semiconductor photocatalytic technology[J]. Applied Sciences, 2019, 9(12): 2489.
[5] WANG B, WANG M Y, LIU F Y, et al. Ti3C2: an ideal co-catalyst? [J]. Angewandte Chemie, 2020, 59(5): 1914-1918.
[6] 潘 睿,傅 敏,陈正波,等.ZnSn(OH)6/SrSn(OH)6光催化降解甲苯的性能研究[J].人工晶体学报,2021,50(1):122-129+137.
PAN R, FU M, CHEN Z B, et al. Photocatalytic degradation of toluene by ZnSn(OH)6/SrSn(OH)6[J]. Journal of Synthetic Crystals, 2021, 50(1): 122-129+137(in Chinese).
[7] RAJORIYA S, BARGOLE S, GEORGE S, et al. Synthesis and characterization of samarium and nitrogen doped TiO2 photocatalysts for photo-degradation of 4-acetamidophenol in combination with hydrodynamic and acoustic cavitation[J]. Separation and Purification Technology, 2019, 209: 254-269.
[8] PRASAD S, SHANMUGAM P, BHUVANESWARI K, et al. Rod-shaped carbon aerogel-assisted CdS nanocomposite for the removal of methylene blue dye and colorless phenol[J]. Crystals, 2020, 10(4): 300.
[9] LV Z S, LIU L, ZHANGYANG X Y, et al. Enhanced absorptive characteristics of GaN nanowires for ultraviolet (UV) photocathode[J]. Applied Physics A, 2020, 126(3): 1-9.
[10] TONG T, ZHU B C, JIANG C J, et al. Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4[J]. Applied Surface Science, 2018, 433: 1175-1183.
[11] WU Y L, WANG Y M, LI M T. Progress in photocatalysis of g-C3N4 and its modified compounds[J]. E3S Web of Conferences, 2021, 233: 01114.
[12] LIU X L, MA R, ZHUANG L, et al. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(8): 751-790.
[13] STARUKH H, PRAUS P. Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis[J]. Catalysts, 2020, 10(10): 1119.
[14] STEJSKAL J, ACHARYA U, BOBER P, et al. Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction[J]. Applied Surface Science, 2019, 492: 497-503.
[15] D N, HUMAYUN M, BHATTACHARYYA D, et al. Hierarchical Sr-ZnO/g-C3N4 heterojunction with enhanced photocatalytic activities[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396: 112515.
[16] WANG G R, JIN Z L. Rationally designed functional Ni2P nanoparticles as co-catalyst modified CdS@g-C3N4 heterojunction for efficient photocatalytic hydrogen evolution[J]. ChemistrySelect, 2019, 4(12): 3602-3610.
[17] 许振霞,梁俊辉,陈 达,等.具有可见光响应的磷烯/g-C3N4异质结的构建及其在高效太阳能分解水制氢中的应用[J].人工晶体学报,2020,49(4):624-630.
XU Z X, LIANG J H, CHEN D, et al. Construction of phosphoene/g-C3N4 heterojunction with visible light response and its application in high efficiency hydrogen production from solar water splitting[J]. Journal of Synthetic Crystals, 2020, 49(4): 624-630(in Chinese).
[18] XU Q L, ZHU B C, JIANG C J, et al. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance[J]. Solar RRL, 2018, 2(3): 1800006.
[19] ZHANG M, LIU X Z, ZENG X, et al. Photocatalytic degradation of toluene by In2S3/g-C3N4 heterojunctions[J]. Chemical Physics Letters, 2020, 738: 100049.
[20] WU F, ZHANG Z B, CHENG Z P, et al. The enhanced photocatalytic reduction of uranium(Ⅵ) by ZnS@g-C3N4 heterojunctions under sunlight[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(2): 1125-1133.
[21] YE C Y, WANG R, WANG H Y, et al. The high photocatalytic efficiency and stability of LaNiO3/g-C3N4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen[J]. BMC Chemistry, 2020, 14(1): 65.
[22] AL-ZAQRI N, AHMED M A, ALSALME A, et al. Synthesis of novel direct Z-scheme AgVO3-g-C3N4 heterojunction for photocatalytic hydrogen production and bisphenol degradation[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 2601-2617.
[23] AI C Z, LI J, YANG L, et al. Transforming photocatalytic g-C3N4/MoSe2 into a direct Z-scheme system via boron-doping: a hybrid DFT study[J]. ChemSusChem, 2020, 13(18): 4985-4993.
[24] MA X G, CHEN C, HU J S, et al. Evidence of direct Z-scheme g-C3N4/WS2 nanocomposite under interfacial coupling: first-principles study[J]. Journal of Alloys and Compounds, 2019, 788: 1-9.
[25] XUE Z, ZHANG X Y, QIN J Q, et al. Constructing MoS2/g-C3N4 heterojunction with enhanced oxygen evolution reaction activity: a theoretical insight[J]. Applied Surface Science, 2020, 510: 145489.
[26] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 2005, 220(5/6): 567-570.
[27] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[28] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Physical Review Letters, 2009, 102(7): 073005.
[29] CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747.
[30] TETER D M, HEMLEY R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271(5245): 53-55.
[31] 危 阳,马新国,祝 林,等.二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究[J].物理学报,2017,66(8):087101.
WEI Y, MA X G, ZHU L, et al. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure[J]. Acta Physica Sinica, 2017, 66(8): 087101(in Chinese).
[32] MA X G, HU J S, HE H, et al. New understanding on enhanced photocatalytic activity of g-C3N4/BiPO4 heterojunctions by effective interfacial coupling[J]. ACS Applied Nano Materials, 2018, 1(10): 5507-5515.
[33] 郭丽娟,胡吉松,马新国,等.二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究[J].物理学报,2019,68(9):221-229.
GUO L J, HU J S, MA X G, et al. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure[J]. Acta Physica Sinica, 2019, 68(9): 221-229(in Chinese).
[34] IVANOV A S, MILLER E, BOLDYREV A I, et al. Pseudo jahn-teller origin of buckling distortions in two-dimensional triazine-based graphitic carbon nitride (g-C3N4) sheets[J]. The Journal of Physical Chemistry C, 2015, 119(21): 12008-12015.
[35] 张 琴,谢 泉,杨文晟,等.K、Ti掺杂Mg2Si电子结构和光学性质的第一性原理研究[J].人工晶体学报,2021,50(9):1625-1632.
ZHANG Q, XIE Q, YANG W S, et al. Electronic structure and optical properties of K and Ti doped Mg2Si by first-principles study[J]. Journal of Synthetic Crystals, 2021, 50(9): 1625-1632(in Chinese).
[36] 周 锋,任向红,刘建友,等.光催化降解水体有机污染物的研究进展[J].材料工程,2018,46(10):9-19.
ZHOU F, REN X H, LIU J Y, et al. Development of photocatalytic degradation of organic pollutants in water[J]. Journal of Materials Engineering, 2018, 46(10): 9-19(in Chinese).
[37] PHAM T A, PING Y, GALLI G. Modelling heterogeneous interfaces for solar water splitting[J]. Nature Materials, 2017, 16(4): 401-408.
[38] LIU Z R, YU X, LI L L. Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field[J]. Chinese Journal of Catalysis, 2020, 41(4): 534-549.
[39] 胡亚平,龙 飞,莫淑一,等.Cu2O/ZnO异质结构纳米线阵列的光电化学性能[J].人工晶体学报,2015,44(8):2138-2143.
HU Y P, LONG F, MO S Y, et al. Photoelectrochemical performance of Cu2O/ZnO hetero-nanowire arrays[J]. Journal of Synthetic Crystals, 2015, 44(8): 2138-2143(in Chinese).
[40] 张丽丽,夏 桐,刘桂安,等.第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质[J].物理学报,2019,68(1):245-253.
ZHANG L L, XIA T, LIU G A, et al. Electronic and optical properties of N-Pr co-doped anatase TiO2 from first-principles[J]. Acta Physica Sinica, 2019, 68(1): 245-253(in Chinese). |