[1] CARAPELLUCCI R, GIORDANO L. Steam, dry and autothermal methane reforming for hydrogen production: a thermodynamic equilibrium analysis[J]. Journal of Power Sources, 2020, 469: 228391. [2] NAIKOO G A, ARSHAD F, HASSAN I U, et al. Thermocatalytic hydrogen production through decomposition of methane-a review[J]. Frontiers in Chemistry, 2021, 9: 736801. [3] RODAT S, ABANADES S, SANS J L, et al. A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7748-7758. [4] MURADOV N. Hydrogen via methane decomposition: an application for decarbonization of fossil fuels[J]. International Journal of Hydrogen Energy, 2001, 26(11): 1165-1175. [5] BORETTI A, BANIK B K. Advances in hydrogen production from natural gas reforming[J]. Advanced Energy and Sustainability Research, 2021, 2(11): 2100097. [6] DENIZ C, KARATEPE N. Hydrogen and carbon nanotube production via catalytic decomposition of methane[C]//SPIE NanoScience + Engineering. Proc SPIE 8814, Carbon Nanotubes, Graphene, and Associated Devices Ⅵ, San Diego, California, USA. 2013, 8814: 19-31. [7] DHAND V, YADAV M, KIM S H, et al. A comprehensive review on the prospects of multi-functional carbon nano onions as an effective, high- performance energy storage material[J]. Carbon, 2021, 175: 534-575. [8] BARTELMESS J, GIORDANI S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications[J]. Beilstein Journal of Nanotechnology, 2014, 5: 1980-1998. [9] SHARMA A, AGRAWAL A, PANDEY G, et al. Carbon nano-onion-decorated ZnO composite-based enzyme-less electrochemical biosensing approach for glucose[J]. ACS Omega, 2022, 7(42): 37748-37756. [10] SU X L, ZHANG J, JIA Y, et al. Preparation and microwave absorption property of nano onion-like carbon in the frequency range of 8.2-12.4 GHz[J]. Journal of Alloys and Compounds, 2017, 695: 1420-1425. [11] SIEMIASZKO G, HRYNIEWICKA A, BRECZKO J, et al. Carbon nano-onion induced organization of polyacrylonitrile-derived block star polymers to obtain mesoporous carbon materials[J]. Chemical Communications, 2022, 58(48): 6829-6832. [12] UGARTE D. Canonical structure of large carbon clusters: Cn, n>100[J]. Europhysics Letters (EPL), 1993, 22(1): 45-50. [13] MYKHAILIV O, ZUBYK H, PLONSKA-BRZEZINSKA M E. Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications[J]. Inorganica Chimica Acta, 2017, 468: 49-66. [14] JIN H, WU S C, LI T, et al. Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors[J]. Applied Surface Science, 2019, 488: 593-599. [15] PAVLYUCHENKO P E, SEROPYAN G M, TRENIKHIN M V, et al. Structural transformations of a carbon nanomaterial under high-energy laser irradiation[J]. Russian Journal of General Chemistry, 2020, 90(3): 559-565. [16] DOU F, SHI L Y, CHEN G R, et al. Silicon/carbon composite anode materials for lithium-ion batteries[J]. Electrochemical Energy Reviews, 2019, 2(1): 149-198. [17] WANG D K, ZHOU C L, CAO B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318. [18] 张卫珂, 付俊杰, 常 杰, 等. 纳米洋葱碳的制备及其纯化研究[J]. 新型炭材料, 2014, 29(5): 398-403. ZHANG W K, FU J J, CHANG J, et al. Fabrication and purification of carbon nano onions[J]. New Carbon Materials, 2014, 29(5): 398-403 (in Chinese). [19] BOUHOUCH L, FADEL M, HILALI E. Magnetic properties of the electrolytic super alloys Ni-Fe[J]. Physica Status Solidi C, 2006, 3(9): 3253-3256. [20] DERBELI M, BARAMBONES O, SILAA M Y, et al. Real-time implementation of a new MPPT control method for a DC-DC boost converter used in a PEM fuel cell power system[J]. Actuators, 2020, 9(4): 105. [21] HE W D, ZOU J, WANG B, et al. Gas transport in porous electrodes of solid oxide fuel cells: a review on diffusion and diffusivity measurement[J]. Journal of Power Sources, 2013, 237: 64-73. |