[1] LI D X, ZENG X J, LI Z P, et al. Progress and perspectives in dielectric energy storage ceramics[J]. Journal of Advanced Ceramics, 2021, 10(4): 675-703. [2] HAO X H. A review on the dielectric materials for high energy-storage application[J]. Journal of Advanced Dielectrics, 2013, 3(1): 1330001. [3] JAYAKRISHNAN A R, SILVA J P B, KAMAKSHI K, et al. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors?[J]. Progress in Materials Science, 2023, 132: 101046. [4] KLING J, TAN X L, JO W, et al. In situ transmission electron microscopy of electric field-triggered reversible domain formation in Bi-based lead-free piezoceramics[J]. Journal of the American Ceramic Society, 2010, 93(9): 2452-2455. [5] SCHMITT L A, KLING J, HINTERSTEIN M, et al. Structural investigations on lead-free Bi1/2Na1/2TiO3-based piezoceramics[J]. Journal of Materials Science, 2011, 46(12): 4368-4376. [6] JO W, SCHAAB S, SAPPER E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3[J]. Journal of Applied Physics, 2011, 110(7): 074106. [7] WANG B Y, LUO L H, JIANG X J, et al. Energy-storage properties of (1-x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 lead-free ceramics[J]. Journal of Alloys and Compounds, 2014, 585: 14-18. [8] 何俊峰, 梁 山, 谢 帅, 等. (Sr0.7Bi0.2)TiO3取代BNT基无铅陶瓷的相变及储能特性[J]. 人工晶体学报, 2017, 46(10): 1965-1970. HE J F, LIANG S, XIE S, et al. Phase transition and energy-storage property of (Sr0.7Bi0.2)TiO3 substituted BNT-based lead-free ceramics[J]. Journal of Synthetic Crystals, 2017, 46(10): 1965-1970 (in Chinese). [9] QIAO X S, WU D, ZHANG F D, et al. Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics[J]. Journal of the European Ceramic Society, 2019, 39(15): 4778-4784. [10] ZHOU X X, YUAN C L, LI Q N, et al. Energy storage properties and electrical behavior of lead-free (1-x) Ba0.04Bi0.48Na0.48TiO3-xSrZrO3 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4): 3948-3956. [11] REN P R, LIU Z C, WANG X, et al. Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.10.1TiO3 based ceramics[J]. Journal of Alloys and Compounds, 2018, 742: 683-689. [12] LI Q N, ZHOU C R, XU J W, et al. Ergodic relaxor state with high energy storage performance induced by doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 ceramics[J]. Journal of Electronic Materials, 2016, 45(10): 5146-5151. [13] YANG Y, XU J, YANG L, et al. Highly enhanced discharged energy density and superior cyclic stability of Bi0.5Na0.5TiO3-based ceramics by introducing Sr0.7Ca0.3TiO3 component[J]. Materials Chemistry and Physics, 2022, 276: 125402. [14] WU J Y, MAHAJAN A, RIEKEHR L, et al. Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage[J]. Nano Energy, 2018, 50: 723-732. [15] ZHAO N S, FAN H Q, NING L, et al. Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics[J]. Journal of the American Ceramic Society, 2018, 101(12): 5578-5585. [16] LI T Y, CHEN P F, LI F, et al. Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3[J]. Chemical Engineering Journal, 2021, 406: 127151. [17] ZHOU X F, QI H, YAN Z N, et al. Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3-NaTaO3 relaxor ferroelectrics[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43107-43115. [18] LI F, ZHAI J W, SHEN B, et al. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics[J]. Journal of Applied Physics, 2017, 121(5): 054103. [19] WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives[J]. Chemical Reviews, 2021, 121(10): 6124-6172. [20] QI H, ZUO R Z, ZHOU X F, et al. Phase structure dependence of acceptor doping effects in (Bi0.5Na0.5)TiO3-BaTiO3 lead-free ceramics[J]. Journal of Alloys and Compounds, 2019, 802: 6-12. [21] TANG X, LIU L, GUO L, et al. High-temperature and long-term stability in Co/Sb-codoped (Bi0.5Na0.5)TiO3-based electrostrictive ceramics[J]. Journal of Alloys and Compounds, 2021, 876: 160202. |