Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (9): 1547-1557.DOI: 10.16553/j.cnki.issn1000-985x.2025.0078
• Research Articles • Previous Articles Next Articles
HAN Yibo(
), JI Xu(
), JING Qun(
), ZHU Xuankai, AIZIZAIMU·WUBULITAYIER , ZHAO Wenhao, CAO Xinjia
Received:2025-04-14
Online:2025-09-20
Published:2025-09-23
Contact:
JI Xu, JING Qun
CLC Number:
HAN Yibo, JI Xu, JING Qun, ZHU Xuankai, AIZIZAIMU·WUBULITAYIER , ZHAO Wenhao, CAO Xinjia. Birefringence Enhancement Mechanism and Lattice Engineering Controlling Strategy of YPO4[J]. Journal of Synthetic Crystals, 2025, 54(9): 1547-1557.
| Compound | ICSD number | Space group number | Space group symbol | Lattice constant/Å | Crystal system | ||
|---|---|---|---|---|---|---|---|
| a | b | c | |||||
| Ⅰ | 24514 | 141 | I41/amd | 6.876 | 6.876 | 6.186 | Tetragonal |
| Ⅱ | 133671 | 141 | I41/amd | 6.907 | 6.907 | 6.035 | Tetragonal |
Table 1 Lattice parameter of YPO4 crystal
| Compound | ICSD number | Space group number | Space group symbol | Lattice constant/Å | Crystal system | ||
|---|---|---|---|---|---|---|---|
| a | b | c | |||||
| Ⅰ | 24514 | 141 | I41/amd | 6.876 | 6.876 | 6.186 | Tetragonal |
| Ⅱ | 133671 | 141 | I41/amd | 6.907 | 6.907 | 6.035 | Tetragonal |
| Compound | Group | Distortion index | Compound | Group | Distortion index |
|---|---|---|---|---|---|
| Ⅰ | PO4 | 0 | Ⅱ | PO4 | 0 |
| YO8 | 0.001 32 | YO8 | 0.054 16 |
Table 2 Distortion indices of structuresⅠ and Ⅱ
| Compound | Group | Distortion index | Compound | Group | Distortion index |
|---|---|---|---|---|---|
| Ⅰ | PO4 | 0 | Ⅱ | PO4 | 0 |
| YO8 | 0.001 32 | YO8 | 0.054 16 |
| Structure | Band gap/eV | Refractive index | Birefringence index | |
|---|---|---|---|---|
| no | ne | Δn(@1 064 nm) | ||
| Ⅰ | 5.995 3 | 1.824 80 | 1.916 30 | 0.091 50 |
| Ⅱ | 6.019 7 | 1.828 96 | 1.918 91 | 0.089 94 |
Table 3 Band gaps and birefringence index of compounds Ⅰ-Ⅱ
| Structure | Band gap/eV | Refractive index | Birefringence index | |
|---|---|---|---|---|
| no | ne | Δn(@1 064 nm) | ||
| Ⅰ | 5.995 3 | 1.824 80 | 1.916 30 | 0.091 50 |
| Ⅱ | 6.019 7 | 1.828 96 | 1.918 91 | 0.089 94 |
| Contribution | Structure | Scaling/% | Bond length/Å | ne | no | Δn |
|---|---|---|---|---|---|---|
| PO4 | Ⅰ | 100 | 1.548 10 | 1.629 | 1.535 | 0.094 |
| 90 | 1.527 93 | 1.622 | 1.545 | 0.077 | ||
| 80 | 1.498 47 | 1.608 | 1.531 | 0.077 | ||
| 70 | 1.449 14 | 1.573 | 1.506 | 0.067 | ||
| Ⅱ | 100 | 1.547 50 | 1.634 | 1.540 | 0.094 | |
| 90 | 1.526 80 | 1.617 | 1.542 | 0.075 | ||
| 80 | 1.497 57 | 1.635 | 1.551 | 0.083 | ||
| 70 | 1.446 71 | 1.592 | 1.527 | 0.065 | ||
| YO8 | Ⅰ | 100 | 2.288 05 | 1.745 | 1.626 | 0.120 |
| 90 | 2.200 48 | 1.727 | 1.636 | 0.090 | ||
| 80 | 2.080 60 | 1.716 | 1.626 | 0.090 | ||
| 70 | 1.954 11 | 1.679 | 1.602 | 0.076 | ||
| Ⅱ | 100 | 2.377 08 | 1.745 | 1.625 | 0.120 | |
| 90 | 2.202 65 | 1.726 | 1.634 | 0.092 | ||
| 80 | 2.082 53 | 1.717 | 1.624 | 0.092 | ||
| 70 | 1.953 62 | 1.676 | 1.604 | 0.072 |
Table 4 RSAC analysis of refractive index and birefringence index under full-dimensional compression (@1 064 nm)
| Contribution | Structure | Scaling/% | Bond length/Å | ne | no | Δn |
|---|---|---|---|---|---|---|
| PO4 | Ⅰ | 100 | 1.548 10 | 1.629 | 1.535 | 0.094 |
| 90 | 1.527 93 | 1.622 | 1.545 | 0.077 | ||
| 80 | 1.498 47 | 1.608 | 1.531 | 0.077 | ||
| 70 | 1.449 14 | 1.573 | 1.506 | 0.067 | ||
| Ⅱ | 100 | 1.547 50 | 1.634 | 1.540 | 0.094 | |
| 90 | 1.526 80 | 1.617 | 1.542 | 0.075 | ||
| 80 | 1.497 57 | 1.635 | 1.551 | 0.083 | ||
| 70 | 1.446 71 | 1.592 | 1.527 | 0.065 | ||
| YO8 | Ⅰ | 100 | 2.288 05 | 1.745 | 1.626 | 0.120 |
| 90 | 2.200 48 | 1.727 | 1.636 | 0.090 | ||
| 80 | 2.080 60 | 1.716 | 1.626 | 0.090 | ||
| 70 | 1.954 11 | 1.679 | 1.602 | 0.076 | ||
| Ⅱ | 100 | 2.377 08 | 1.745 | 1.625 | 0.120 | |
| 90 | 2.202 65 | 1.726 | 1.634 | 0.092 | ||
| 80 | 2.082 53 | 1.717 | 1.624 | 0.092 | ||
| 70 | 1.953 62 | 1.676 | 1.604 | 0.072 |
| Contribution | Structure | Scaling/% | Bond length/Å | ne | no | Δn |
|---|---|---|---|---|---|---|
| PO4 | Ⅰ | 100 | 1.548 10 | 1.629 | 1.535 | 0.094 |
| 90 | 1.542 04 | 1.616 | 1.530 | 0.086 | ||
| 80 | 1.532 41 | 1.598 | 1.525 | 0.074 | ||
| 70 | 1.520 44 | 1.590 | 1.533 | 0.057 | ||
| Ⅱ | 100 | 1.547 50 | 1.634 | 1.540 | 0.094 | |
| 90 | 1.540 74 | 1.647 | 1.552 | 0.096 | ||
| 80 | 1.530 93 | 1.632 | 1.550 | 0.082 | ||
| 70 | 1.518 33 | 1.587 | 1.536 | 0.051 | ||
| YO8 | Ⅰ | 100 | 2.288 05 | 1.745 | 1.626 | 0.120 |
| 90 | 2.281 63 | 1.740 | 1.622 | 0.118 | ||
| 80 | 2.274 19 | 1.735 | 1.619 | 0.115 | ||
| 70 | 2.212 46 | 1.729 | 1.621 | 0.108 | ||
| Ⅱ | 100 | 2.377 08 | 1.745 | 1.625 | 0.119 | |
| 90 | 2.282 96 | 1.740 | 1.621 | 0.119 | ||
| 80 | 2.273 11 | 1.733 | 1.619 | 0.114 | ||
| 70 | 2.200 93 | 1.728 | 1.624 | 0.104 |
Table 5 RSAC analysis of refractive index and birefringence index under uniaxial compression (@1 064 nm)
| Contribution | Structure | Scaling/% | Bond length/Å | ne | no | Δn |
|---|---|---|---|---|---|---|
| PO4 | Ⅰ | 100 | 1.548 10 | 1.629 | 1.535 | 0.094 |
| 90 | 1.542 04 | 1.616 | 1.530 | 0.086 | ||
| 80 | 1.532 41 | 1.598 | 1.525 | 0.074 | ||
| 70 | 1.520 44 | 1.590 | 1.533 | 0.057 | ||
| Ⅱ | 100 | 1.547 50 | 1.634 | 1.540 | 0.094 | |
| 90 | 1.540 74 | 1.647 | 1.552 | 0.096 | ||
| 80 | 1.530 93 | 1.632 | 1.550 | 0.082 | ||
| 70 | 1.518 33 | 1.587 | 1.536 | 0.051 | ||
| YO8 | Ⅰ | 100 | 2.288 05 | 1.745 | 1.626 | 0.120 |
| 90 | 2.281 63 | 1.740 | 1.622 | 0.118 | ||
| 80 | 2.274 19 | 1.735 | 1.619 | 0.115 | ||
| 70 | 2.212 46 | 1.729 | 1.621 | 0.108 | ||
| Ⅱ | 100 | 2.377 08 | 1.745 | 1.625 | 0.119 | |
| 90 | 2.282 96 | 1.740 | 1.621 | 0.119 | ||
| 80 | 2.273 11 | 1.733 | 1.619 | 0.114 | ||
| 70 | 2.200 93 | 1.728 | 1.624 | 0.104 |
| Atom | YPO4-Ⅰ | YPO4-Ⅱ | ||||||
|---|---|---|---|---|---|---|---|---|
| qxx | qyy | qzz | Δq | qxx | qyy | qzz | Δq | |
| Y | 3.857 | 3.857 | 4.165 | 0.308 | 3.853 | 3.853 | 4.165 | 0.312 |
| P | 3.354 | 3.354 | 4.386 | 1.032 | 3.354 | 3.354 | 4.379 | 1.025 |
| O | -1.033 | -2.573 | -2.138 | -1.105 | -1.033 | -2.571 | -2.136 | -1.103 |
Table 6 Analysis of Born effective charges for structures Ⅰ-Ⅱ
| Atom | YPO4-Ⅰ | YPO4-Ⅱ | ||||||
|---|---|---|---|---|---|---|---|---|
| qxx | qyy | qzz | Δq | qxx | qyy | qzz | Δq | |
| Y | 3.857 | 3.857 | 4.165 | 0.308 | 3.853 | 3.853 | 4.165 | 0.312 |
| P | 3.354 | 3.354 | 4.386 | 1.032 | 3.354 | 3.354 | 4.379 | 1.025 |
| O | -1.033 | -2.573 | -2.138 | -1.105 | -1.033 | -2.571 | -2.136 | -1.103 |
Fig.7 ELF maps of compounds Ⅰ and Ⅱ under lattice engineering (scaling=70%). (a), (b) ELF of compound Ⅰ; (c), (d) ELF of compound Ⅱ. (a) and (c) represent ELF under isotropic compression, and (b) and (d) under uniaxial compression
| [1] | FLOSSMANN F, SCHWARZ U T, MAIER M, et al. Polarization singularities from unfolding an optical vortex through a birefringent crystal[J]. Physical Review Letters, 2005, 95(25): 253901. |
| [2] |
LI M, PAN H F, TONG Y Q, et al. All-optical ultrafast polarization switching of terahertz radiation by impulsive molecular alignment[J]. Optics Letters, 2011, 36(18): 3633-3635.
DOI PMID |
| [3] | HLUBINA P, CIPRIAN D, KNYBLOVÁ L. Interference of white light in tandem configuration of birefringent crystal and sensing birefringent fiber[J]. Optics Communications, 2006, 260(2): 535-541. |
| [4] | SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648. |
| [5] | WU H P, PAN S L, POEPPELMEIER K R, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge[J]. Journal of the American Chemical Society, 2011, 133(20): 7786-7790. |
| [6] | YANG Z H, TUDI A, LEI B H, et al. Enhanced nonlinear optical functionality in birefringence and refractive index dispersion of the deep-ultraviolet fluorooxoborates[J]. Science China Materials, 2020, 63(8): 1480-1488. |
| [7] | YANG Z, LEI B H, ZHANG W, et al. Module-analysis-assisted design of deep ultraviolet fluorooxoborates with extremely large gap and high structural stability[J]. Chemistry of Materials, 2019, 31(8): 2807-2813. |
| [8] | WU S F, WANG G F, XIE J L, et al. Growth of large birefringent α-BBO crystal[J]. Journal of Crystal Growth, 2002, 245(1/2): 84-86. |
| [9] |
LUO H T, TKACZYK T, DERENIAK E L, et al. High birefringence of the yttrium vanadate crystal in the middle wavelength infrared[J]. Optics Letters, 2006, 31(5): 616-618.
PMID |
| [10] | DEVORE J. Refractive indices of rutile and sphalerite[J]. Journal of the optical Society of America, 1951, 41(6):416-419. |
| [11] | CHEN C T, WU Y C, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5 [J]. Josa B, 1989, 6(4): 616-621. |
| [12] |
CHEN X L, ZHANG B B, ZHANG F F, et al. Designing an excellent deep-ultraviolet birefringent material for light polarization[J]. Journal of the American Chemical Society, 2018, 140(47): 16311-16319.
DOI PMID |
| [13] |
DODGE M J. Refractive properties of magnesium fluoride[J]. Applied Optics, 1984, 23(12): 1980.
PMID |
| [14] | LAI H, BAO A, YANG Y, et al. UV luminescence property of YPO4:Re (Re= Ce3+, Tb3+)[J]. The Journal of Physical Chemistry C, 2008, 112(1): 282-286. |
| [15] | ZHANG L Y, WANG S L, YANG H W, et al. Study on optical performance and 532 nm laser damage of rapidly grown KDP crystals[J]. Optical Materials, 2021, 114: 110995. |
| [16] | XIONG L, CHEN J, LU J, et al. Monofluorophosphates: a new source of deep-ultraviolet nonlinear optical materials[J]. Chemistry of Materials, 2018, 30(21): 7823-7830. |
| [17] | ZHANG J H, CLARK D J, BRANT J A, et al. α-Li2ZnGeS4: a wide-bandgap diamond-like semiconductor with excellent balance between laser-induced damage threshold and second harmonic generation response[J]. Chemistry of Materials, 2020, 32(20): 8947-8955. |
| [18] | WANG Y, LIAN Z P, SU X, et al. Cs6RE2(PO4)4 (RE = Y and Gd): two new members of the alkali rare-earth double phosphates[J]. New Journal of Chemistry, 2015, 39(6): 4328-4333. |
| [19] | ZHANG B B, SHI G Q, YANG Z H, et al. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth[J]. Angewandte Chemie (International Edition), 2017, 56(14): 3916-3919. |
| [20] | LI L, WANG Y, LEI B H, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response[J]. Journal of the American Chemical Society, 2016, 138(29): 9101-9104. |
| [21] | SHEN Y G, YANG Y, ZHAO S G, et al. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation[J]. Chemistry of Materials, 2016, 28(19): 7110-7116. |
| [22] | DE-YOREO J J, BURNHAM A K, WHITMAN P K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser[J]. International Materials Reviews, 2002, 47(3): 113-152. |
| [23] | OK K M, LEE D W, SMITH R I, et al. Time-resolved in situ neutron diffraction under supercritical hydrothermal conditions: a study of the synthesis of KTiOPO4 [J]. Journal of the America Chemical Society, 2012, 134(43): 17889-17891. |
| [24] | WANG J, ZHANG H, JIANG M, et al. Flux growth and external morphology of KTiOPO4 crystals[J]. Crystal Growth and Design, 2009, 9(2): 1190-1193. |
| [25] | ZHANG X, WANG L, ZHANG S, et al. Optical properties of the vacuum-ultraviolet nonlinear optical crystal—BPO4 [J]. Journal of the Optical Society of America B, 2011, 28(9): 2236-2239. |
| [26] | YU P, WU L M, ZHOU L J, et al. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br)[J]. Journal of the American Chemical Society, 2014, 136(1): 480-487. |
| [27] | ZHAO S G, GONG P F, LUO S Y, et al. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3- units[J]. Journal of the American Chemical Society, 2014, 136(24): 8560-8563. |
| [28] | RESHAK A H, KITYK I V, AULUCK S. Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4 single crystals: theory and experiment[J]. The Journal of Physical Chemistry B, 2010, 114(50): 16705-16712. |
| [29] | YU H W, ZHANG W G, YOUNG J, et al. Design and synthesis of the beryllium-free deep-ultraviolet nonlinear optical material Ba3(ZnB5O10)PO4 [J]. Advanced Materials, 2015, 27(45): 7380-7385. |
| [30] | YU H W, CANTWELL J, WU H P, et al. Top-seeded solution crystal growth, morphology, optical and thermal properties of Ba3(ZnB5O10)PO4 [J]. Crystal Growth & Design, 2016, 16(7): 3976-3982. |
| [31] | MILLIGAN W O, MULLICA D F, BEALL G W, et al. Structural investigations of YPO4, ScPO4, and LuPO4 [J]. Inorganica Chimica Acta, 1982, 60: 39-43. |
| [32] | LEI B H, YANG Z H, YU H W, et al. Module-guided design scheme for deep-ultraviolet nonlinear optical materials[J]. Journal of the American Chemical Society, 2018, 140(34): 10726-10733. |
| [33] | XU F, PENG G, LIN C S, et al. Na3Sc2(PO4)2F3: rational design and synthesis of an alkali rare-earth phosphate fluoride as an ultraviolet nonlinear optical crystal with an enlarged birefringence[J]. Journal of Materials Chemistry C, 2020, 8(14): 4965-4972. |
| [34] | TRUKHIN A, BOATNER L A. Electronic structure of ScPO4 single crystals: optical and photoelectric properties[J]. Materials Science Forum, 1997, 239-241: 573-576. |
| [35] | JELLISON J G E, BOATNER L A, Chen C. Spectroscopic refractive indices of metalorthophosphates with the zircon-type structure[J]. Optical materials, 2000, 15(2): 103-109. |
| [36] | TUERHONG N, CHEN H H, HU M, et al. The enhanced bandgap and birefringence of rare-earth phosphates XPO4 (X = Sc, Y, La, and Lu): a first-principles investigation[J]. Physical Chemistry Chemical Physics, 2024, 26(21): 15751-15757. |
| [37] | CHU D D, HUANG Y, XIE C W, et al. Unbiased screening of novel infrared nonlinear optical materials with high thermal conductivity: long-neglected nitrides and popular chalcogenides[J]. Angewandte Chemie, 2023, 135(16): e202300581. |
| [38] | HAFNER J, KRESSE G. The Vienna AB-initio simulation program VASP: an efficient and versatile tool for studying the structural, dynamic, and electronic properties of materials[M]// Properties of Complex Inorganic Solids. Boston, MA: Springer US, 1997: 69-82. |
| [39] | GILLANI S S A, AHMAD R, ZEBA I, et al. Effect of external pressure on the structural stability, electronic structure, band gap engineering and optical properties of LiNbO3: an ab-initio calculation[J]. Materials Today Communications, 2020, 23: 100919. |
| [40] | YUAN Y F, ZHOU Y H, CHEN Z, et al. Pressure induced superconductivity in nonlinear optical crystal ZnGeP2 and its capture at ambient pressure[J]. Materials Today Physics, 2022, 25: 100707. |
| [41] | ZHANG B B, LEE M H, YANG Z H, et al. Simulated pressure-induced blue-shift of phase-matching region and nonlinear optical mechanism for K3B6O10X (X = Cl, Br)[J]. Applied Physics Letters, 2015, 106(3): 031906. |
| [42] | KOHN W. Nobel lecture: electronic structure of matter: wave functions and density functionals[J]. Reviews of Modern Physics, 1999, 71(5): 1253-1266. |
| [43] | PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992, 64(4): 1045-1097. |
| [44] | HAFNER J. Ab-initiosimulations of materials using VASP: density-functional theory and beyond[J]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078. |
| [45] | WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. |
| [46] | ZAGORAC D, MÜLLER H, RUEHL S, et al. Recent developments in the inorganic crystal structure database: theoretical crystal structure data and related features[J]. Journal of Applied Crystallography, 2019, 52(5): 918-925. |
| [47] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
| [48] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
| [49] | BARONI S, DE GIRONCOLI S, CORSO A DAL, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562. |
| [50] | MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44: 1272-1276. |
| [51] | BAUR W H. The geometry of polyhedral distortions. Predictive relationships for the phosphate group[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1974, 30(5): 1195-121. |
| [52] | 黄 昆, 韩汝琦. 固体物理学[M]. 北京: 高等教育出版社, 1988. |
| HUANG K, HAN R Q. Solid state physics[M]. Beijing: Higher Education Press, 1988 (in Chinese). | |
| [53] | SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. |
| [54] | CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. |
| [55] | JIN P Y, SHI X R, CUI X H, et al. Tellurium-oxygen group enhanced birefringence in tellurium phosphates: a first-principles investigation[J]. RSC Advances, 2020, 10(7): 4087-4094. |
| [56] | SPALDIN N A. A beginner's guide to the modern theory of polarization[J]. Journal of Solid State Chemistry, 2012, 195: 2-10. |
| [57] | JING Q, YANG G, HOU J, et al. Positive and negative contribution to birefringence in a family of carbonates: a Born effective charges analysis[J]. Journal of Solid State Chemistry, 2016, 244: 69-74. |
| [1] | LENG Haoning, SUN Xiaoxiao, MU Baixu, NING Lina. First-Principles Study on the Phase Transition Behavior of KNbO3 under High Pressure [J]. Journal of Synthetic Crystals, 2025, 54(9): 1584-1592. |
| [2] | QIN Jilong, LI Xiangyuan, ZHANG Lulu, LIU Jianxin, LI Rui. First-Principles Study on Oxidation of Methane to Methanol Catalyzed by Non-Stoichiometric Tungsten Oxide (WO3-x) [J]. Journal of Synthetic Crystals, 2025, 54(8): 1441-1453. |
| [3] | WANG Chun, WANG Kun, SONG Xiangman, REN Lin, ZHANG Hao. First-Principles Study on the Electrical Properties of Co-Doped β-Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(8): 1426-1432. |
| [4] | CUI Jian, HE Zhihao, DING Jiafu, WANG Yunjie, WAN Fuhong, LI Jiajun, SU Xin. First-Principles Study on the Relationship Between Structure and Properties of Tungstate with d10 Electron Configuration [J]. Journal of Synthetic Crystals, 2025, 54(5): 841-849. |
| [5] | GUO Manyi, WU Jiaxing, YANG Fan, WANG Chao, WANG Yanjie, CHI Yaodan, YANG Xiaotian. First-Principle Study of ε-Ga2O3 Crystal and Its Intrinsic Defects [J]. Journal of Synthetic Crystals, 2025, 54(2): 212-218. |
| [6] | WANG Yunjie, HE Zhihao, DING Jiafu, SU Xin. Influence of Cations on the Structural Framework and the Origin of Birefringence in X2(PO4)2 (X=Ba, Pb) and XPO4 (X=Y, Bi) [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 85-94. |
| [7] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
| [8] | WU Rui, HU Yang, TANG Rongfen, YANG Qian, WANG Xu, WU Yiyi, NIE Dengpan, WANG Huanjiang. Study of Gas-Phase Parasitic Reaction Pathways for ZnO Thin Film Grown by MOCVD [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1608-1619. |
| [9] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
| [10] | CHENG Jiajia, WU Mengqi, YANG Min, WANG Limei, WEI Rongmin. Synthesis, Crystal Structure and Quantum Chemistry Study on [CoⅢ(DIEN)(N3)3] Complex [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1409-1415. |
| [11] | LEI Huiru, ZHANG Lihong. Investigation of the Physical Properties for Pnnm-CrB4 under High Pressure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1231-1238. |
| [12] | MAO Yunhong, ZHAO Chunshen. Synthesis, Crystal Structure and Antitumor Activity of 6-Fluoro-4-Hydroxy-3-Oxo-3,4-Dihydroquinoxaline-1 (2H)-Carboxylic Acid Tert-Butyl Ester [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1257-1268. |
| [13] | LI Lin, ZHANG Peixiong, TAN Juncheng, ZHU Siqi, YIN Hao, LI Zhen, CHEN Zhenqiang. Investigation of Localized Cluster Structure and Spectral Properties of Er-Doped PbF2 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1112-1120. |
| [14] | ZHANG Bo, WANG Yunjie, QI Yajie, DING Jiafu, HE Zhihao, SU Xin. First Principles Study on the Structure-Property Relationship of Alkali Metal Molybdates [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 999-1007. |
| [15] | WANG Tao, ZHANG Yuhao, YIN Hairong. Structural Design and Photocatalytic Antimicrobial Properties of NaTaO3 Based on Density Functional Theory [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1051-1060. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS