Journal of Synthetic Crystals ›› 2026, Vol. 55 ›› Issue (1): 142-150.DOI: 10.16553/j.cnki.issn1000-985x.2025.0059
• Research Articles • Previous Articles Next Articles
Received:2025-03-26
Online:2026-01-20
Published:2026-02-05
CLC Number:
LIANG Zhiqiang, CHANG Rong. First-Principles Study on Two-Dimensional Monolayer TiCuX2 (X=S, Se, Te)[J]. Journal of Synthetic Crystals, 2026, 55(1): 142-150.
| Structure | a/Å | Bond length/Å | ||||
|---|---|---|---|---|---|---|
| Ti—Cu | Ti—X (X=S, Se, Te) | Cu—X (X=S, Se, Te) | ||||
| TiCuS2 | 3.949 | 2.792 | 2.363 | 2.363 | -23.159 | -1.472 |
| TiCuSe2 | 4.044 | 2.859 | 2.493 | 2.493 | -21.404 | -1.107 |
| TiCuTe2 | 4.157 | 2.939 | 2.687 | 2.687 | -19.483 | -0.740 |
Table 1 Lattice parameter a, atomic bond length, total energy Etot, and formation energy Ef of all structures
| Structure | a/Å | Bond length/Å | ||||
|---|---|---|---|---|---|---|
| Ti—Cu | Ti—X (X=S, Se, Te) | Cu—X (X=S, Se, Te) | ||||
| TiCuS2 | 3.949 | 2.792 | 2.363 | 2.363 | -23.159 | -1.472 |
| TiCuSe2 | 4.044 | 2.859 | 2.493 | 2.493 | -21.404 | -1.107 |
| TiCuTe2 | 4.157 | 2.939 | 2.687 | 2.687 | -19.483 | -0.740 |
| Structure | C11/GPa | C12/GPa | C66/GPa | |||
|---|---|---|---|---|---|---|
| TiCuS2 | 47.908 | 12.798 | 26.786 | 43.305 | 0.342 | 56.917 |
| TiCuSe2 | 42.042 | 8.074 | 21.057 | 30.515 | 0.217 | 45.768 |
| TiCuTe2 | 31.035 | 4.755 | 14.538 | 17.521 | 0.396 | 30.307 |
Table 2 Elastic constant Cij, isotropic shear modulus G, elastic modulus E and Poisson ratio ν of all structures
| Structure | C11/GPa | C12/GPa | C66/GPa | |||
|---|---|---|---|---|---|---|
| TiCuS2 | 47.908 | 12.798 | 26.786 | 43.305 | 0.342 | 56.917 |
| TiCuSe2 | 42.042 | 8.074 | 21.057 | 30.515 | 0.217 | 45.768 |
| TiCuTe2 | 31.035 | 4.755 | 14.538 | 17.521 | 0.396 | 30.307 |
| Structure | Atomic magnetic moment/µB | MAE/eV | Tc/K | |||
|---|---|---|---|---|---|---|
| Ti | Cu | X | ||||
| TiCuS2 | 0.916 | -0.029 | -0.030 | 1.000 | 9.071 | 140 |
| TiCuSe2 | 0.941 | -0.030 | -0.032 | 1.000 | 79.832 | 250 |
| TiCuTe2 | 0.834 | -0.007 | -0.033 | 1.000 | 109.25 | 180 |
Table 3 Atomic magnetic moments, total magnetic moments Mt, magnetic anisotropy energy MAE, and Curie temperature Tc of all structures
| Structure | Atomic magnetic moment/µB | MAE/eV | Tc/K | |||
|---|---|---|---|---|---|---|
| Ti | Cu | X | ||||
| TiCuS2 | 0.916 | -0.029 | -0.030 | 1.000 | 9.071 | 140 |
| TiCuSe2 | 0.941 | -0.030 | -0.032 | 1.000 | 79.832 | 250 |
| TiCuTe2 | 0.834 | -0.007 | -0.033 | 1.000 | 109.25 | 180 |
| [1] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. |
| [2] | BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9/10): 351-355. |
| [3] | HUANG Y L, CHEN W, WEE A T S. Two-dimensional magnetic transition metal chalcogenides[J]. SmartMat, 2021, 2(2): 139-153. |
| [4] | MAK K F, LEE C G, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. |
| [5] | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
| [6] | DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726. |
| [7] | DONG R H, ZHANG T, FENG X L. Interface-assisted synthesis of 2D materials: trend and challenges[J]. Chemical Reviews, 2018, 118(13): 6189-6235. |
| [8] | GEIM A K, GRIGORIEVA I V. Van der waals heterostructures[J]. Nature, 2013, 499(7459): 419-425. |
| [9] | YANKOWITZ M, XUE J M, CORMODE D, et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride[J]. Nature Physics, 2012, 8(5): 382-386. |
| [10] | WANG M K, ZHU J, ZI Y, et al. Functional two-dimensional black phosphorus nanostructures towards next-generation devices[J]. Journal of Materials Chemistry A, 2021, 9(21): 12433-12473. |
| [11] | KAUL A B. Two-dimensional layered materials: structure, properties, and prospects for device applications[J]. Journal of Materials Research, 2014, 29(3): 348-361. |
| [12] | FENG Y, CHEN H, WU B. Reconfigurable diode effect and giant tunnel magnetoresistance ratio in magnetic tunnel junctions based on spin gapless semiconductor and half metallic Heusler alloy[J]. Applied Surface Science, 2025, 689: 162551. |
| [13] | LI S S, HU S J, JI W X, et al. Emergence of ferrimagnetic half-metallicity in two-dimensional MXene Mo3N2F2 [J]. Applied physics letters, 2017, (20): 111. |
| [14] | ZHOU S S, WANG R Y, HAN J B, et al. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: space-confined chemical vapor deposition synthesis and Raman scattering investigation[J]. Advanced Functional Materials, 2019, 29(3): 1805880. |
| [15] | WANG B, ZHANG Y H, MA L, et al. MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy[J]. Nanoscale, 2019, 11(10): 4204-4209. |
| [16] | ZENG H H, JIN S, WANG J H, et al. Ferromagnetic half-metal with high Curie temperature: Janus Mn2PAs monolayer[J]. Journal of Materials Science, 2021, 56(23): 13215-13226. |
| [17] | WEI X P, DU L L, MENG J L, et al. Two-dimensional ferromagnetic semiconductor Cr2XP: first-principles calculations and Monte Carlo simulations[J]. Physical Chemistry Chemical Physics, 2024, 26(33): 22099-22111. |
| [18] | SONG X L, HUANG W C, WANG X F, et al. Two-dimensional single-layer ferrimagnetic TiMnX2 and TiCoX2: first-principles calculations and Monte Carlo simulations[J]. Physica B: Condensed Matter, 2025, 698: 416740. |
| [19] | KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
| [20] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
| [21] | WANG Y Q, LI G L. Dispersion relation reconstruction for 2D photonic crystals based on polynomial interpolation[J]. Journal of Computational Physics, 2024, 498: 112659. |
| [22] | WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. |
| [23] | JIANG S C, YANG K S. High-throughput design of perpendicular magnetic anisotropy at quaternary Heusler and MgO interfaces[J]. NPJ Computational Materials, 2023, 9: 123. |
| [24] | BORN M, HUANG K. Dynamical theory of crystal lattices[M]. New York: Oxford University Press, 1954. |
| [25] | MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems[J]. Physical Review B, 2014, 90(22): 224104. |
| [26] | JASIUKIEWICZ C, PASZKIEWICZ T, WOLSKI S. Fourth-rank tensors of [[V2]2]-type and elastic material constants for 2D crystals[J]. Physica Status Solidi (b), 2008, 245(3): 557-561. |
| [27] | FRANTSEVICH I N, VORONOV F F, BOKUTA S A. Elastic constants and elastic moduli of metals and insulators hand book[M]. Kiev: Naukova Dumka, 1983. |
| [28] | LUTFALLA S, SHAPOVALOV V, BELL A T. Calibration of the DFT/GGA+U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce[J]. Journal of Chemical Theory and Computation, 2011, 7(7): 2218-2223. |
| [29] | GONG C, ZHANG X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363(6428): eaav4450. |
| [30] | KIM J, KIM K W, KIM B, et al. Exploitable magnetic anisotropy of the two-dimensional magnet CrI3 [J]. Nano Letters, 2020, 20(2): 929-935. |
| [31] | GODDARD P A, SINGLETON J, SENGUPTA P, et al. Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets[J]. New Journal of Physics, 2008, 10(8): 083025. |
| [32] | CHAKRAVARTY S, HALPERIN B I, NELSON D R. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures[J]. Physical Review B, 1989, 39(4): 2344-2371. |
| [33] | BERGQVIST L, ERIKSSON O, BERGMAN A, et al. Atomistic spin dynamics: foundations and applications[M]. Oxford: Oxford University Press, 2017. |
| [34] | EVANS R L, FAN W J, CHUREEMART P, et al. Atomistic spin model simulations of magnetic nanomaterials[J]. Journal of Physics: Condensed Matter, 2014, 26(10): 103202. |
| [35] | DUNN W L. Exploring Monte Carlo methods[M]. Amsterdam Boston: Elsevier/Academic Press, 2011. |
| [36] | QVARNGRD D, HENELIUS P. Classical spin models and basic magnetic interactions on 1/1-approximant crystals[EB/OL]. Arxiv, 2023. DOI: 10.48550/arXiv.2311.03781 . |
| [1] | LIANG Yongfu, YANG Yuping, CHENG Xuerui. Optical Properties of All-Inorganic Perovskite Cesium Tin Bromide [J]. Journal of Synthetic Crystals, 2026, 55(1): 103-110. |
| [2] | KONG Jiaxu, LIN Xueling, PAN Fengchun. Theoretical Study on Influence of Shear Strain on Electronic Structure and Optical Properties of Mn Doped MoS2 [J]. Journal of Synthetic Crystals, 2026, 55(1): 128-141. |
| [3] | LENG Haoning, SUN Xiaoxiao, MU Baixu, NING Lina. First-Principles Study on the Phase Transition Behavior of KNbO3 under High Pressure [J]. Journal of Synthetic Crystals, 2025, 54(9): 1584-1592. |
| [4] | QIN Jilong, LI Xiangyuan, ZHANG Lulu, LIU Jianxin, LI Rui. First-Principles Study on Oxidation of Methane to Methanol Catalyzed by Non-Stoichiometric Tungsten Oxide (WO3-x) [J]. Journal of Synthetic Crystals, 2025, 54(8): 1441-1453. |
| [5] | WANG Chun, WANG Kun, SONG Xiangman, REN Lin, ZHANG Hao. First-Principles Study on the Electrical Properties of Co-Doped β-Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(8): 1426-1432. |
| [6] | MO Qiuyan, WU Jiayin, JING Tao. First-Principle Study on the Gas Sensing Properties of C2H6 and C6H6 with Pt Modified AlN Monolayer [J]. Journal of Synthetic Crystals, 2025, 54(6): 1050-1060. |
| [7] | LIU Jingsong, SHEN Lu, REN Longjun, HUANG Xizhong. Controlling Hydrogen Evolution Reaction of Janus MoSSe by Defect and Strain Engineering [J]. Journal of Synthetic Crystals, 2025, 54(6): 1034-1041. |
| [8] | REN Longjun, CAI Shihu, WANG Fuyuan, JIANG Ping. Prediction of Monolayer C2B6 with Ultra-High Carrier Mobility [J]. Journal of Synthetic Crystals, 2025, 54(5): 850-856. |
| [9] | CUI Jian, HE Zhihao, DING Jiafu, WANG Yunjie, WAN Fuhong, LI Jiajun, SU Xin. First-Principles Study on the Relationship Between Structure and Properties of Tungstate with d10 Electron Configuration [J]. Journal of Synthetic Crystals, 2025, 54(5): 841-849. |
| [10] | XIE You, XIAO Xiaosa, JIANG Ningning, ZHANG Tao. Electrical Transport Properties of Two-Dimensional BC6N/BN Lateral Heterostructure [J]. Journal of Synthetic Crystals, 2025, 54(5): 825-831. |
| [11] | MIN Yueqi, XIE Wenqin, XIE Liang, AN Kang. Optoelectronic Properties of CsPbX3 (X=Cl, Br, I) Regulated by Pd Doping [J]. Journal of Synthetic Crystals, 2025, 54(4): 605-616. |
| [12] | ZHANG Jiaqi, LIN Xueling, TIAN Wenhu, MA Wenjie, ZHANG Xiu, MA Xiaowei, ZHU Qiaoping, HAO Rui, PAN Fengchun. Effect of Strain on Optical Properties of Si Doped A-TiO2 Studied by the First-Principles [J]. Journal of Synthetic Crystals, 2025, 54(4): 617-628. |
| [13] | LI Qi, FU Bo, YU Bowen, ZHAO Hao, LIN Na, JIA Zhitai, ZHAO Xian, TAO Xutang. First-Principle Study on the Interaction Between Al/In Doping and (100) Twins in β-Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(3): 371-377. |
| [14] | ZHA Xianhu, WAN Yuxi, ZHANG Daohua. Research Progress on p-Type Conduction of β Phase Gallium Oxide [J]. Journal of Synthetic Crystals, 2025, 54(2): 177-189. |
| [15] | GUO Manyi, WU Jiaxing, YANG Fan, WANG Chao, WANG Yanjie, CHI Yaodan, YANG Xiaotian. First-Principle Study of ε-Ga2O3 Crystal and Its Intrinsic Defects [J]. Journal of Synthetic Crystals, 2025, 54(2): 212-218. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS