[1] VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping[J]. Applied Physics Letters, 2008, 92(20): 202120. [2] ONUMA T, SAITO S, SASAKI K, et al. Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy[J]. Japanese Journal of Applied Physics, 2015, 54(11): 112601. [3] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. MBE grown Ga2O3 and its power device applications[J]. Journal of Crystal Growth, 2013, 378: 591-595. [4] HIGASHIWAKI M, MURAKAMI H, KUMAGAI Y, et al. Current status of Ga2O3 power devices[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A1. [5] BALIGA B J. Power semiconductor device figure of merit for high-frequency applications[J]. IEEE Electron Device Letters, 1989, 10(10): 455-457. [6] MU W X, JIA Z T, YIN Y R, et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 2017, 714: 453-458. [7] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11R): 8506. [8] KURAMATA A, KOSHI K, WATANABE S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A2. [9] GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191. [10] GALAZKA Z, IRMSCHER K, SCHEWSKI R, et al. Czochralski-grown bulk β-Ga2O3 single crystals doped with mono-, di-, tri-, and tetravalent ions[J]. Journal of Crystal Growth, 2020, 529: 125297. [11] HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. [12] VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Large-size β-Ga2O3 single crystals and wafers[J]. Journal of Crystal Growth, 2004, 270(3/4): 420-426. [13] ZHANG T, CHENG Q, LI Y F, et al. Investigation of the surface optimization of β-Ga2O3 films assisted deposition by pulsed MOCVD[J]. Scripta Materialia, 2022, 213: 114623. [14] MAUZE A, ZHANG Y W, ITOH T, et al. Metal oxide catalyzed epitaxy (MOCATAXY) of β-Ga2O3 films in various orientations grown by plasma-assisted molecular beam epitaxy[J]. APL Materials, 2020, 8(2): 021104. [15] SDOEUNG S, SASAKI K, MASUYA S, et al. Stacking faults: origin of leakage current in halide vapor phase epitaxial (001) β-Ga2O3 Schottky barrier diodes[J]. Applied Physics Letters, 2021, 118(17): 172106. [16] ISOMURA N, NAGAOKA T, WATANABE Y, et al. Determination of Zn-containing sites in β-Ga2O3 film grown through mist chemical vapor deposition via X-ray absorption spectroscopy[J]. Japanese Journal of Applied Physics, 2020, 59(7): 070909. [17] WANG M G, MU S, SPECK J S, et al. First-principles study of twin boundaries and stacking faults in β-Ga2O3[J]. Advanced Materials Interfaces, 2025, 12(2): 2300318. [18] LI Q, GUAN X, ZHONG Y, et al. Structures, influences, and formation mechanism of planar defects on (100), (001) and (-201) planes in β-Ga2O3 crystals[J]. Physical Chemistry Chemical Physics, 2024, 26(16): 12564-12572. [19] UEDA O, IKENAGA N, KOSHI K, et al. Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202BD. [20] LUNDH J S, HUYNH K, LIAO M, et al. Experimental determination of critical thickness limitations of (010) β-(AlxGa1-x)2O3 heteroepitaxial films[J]. Applied Physics Letters, 2023, 123(22): 222104. [21] ARDENGHI A, BIERWAGEN O, LÄHNEMANN J, et al. Phase-selective growth of κ- vs β-Ga2O3 and (InxGa1-x)2O3 by in-mediated metal exchange catalysis in plasma-assisted molecular beam epitaxy[J]. APL Materials, 2024, 12(10): 101103. [22] JESENOVEC J, DUTTON B, STONE-WEISS N, et al. Alloyed β-(AlxGa1-x)2O3 bulk Czochralski single β-(Al0.1Ga0.9)2O3 and polycrystals β-(Al0.33Ga0.66)2O3, β-(Al0.5Ga0.5)2O3, and property trends[J]. Journal of Applied Physics, 2022, 131(15): 155702. [23] GALAZKA Z, FIEDLER A, POPP A, et al. Bulk single crystals and physical properties of β-(AlxGa1-x)2O3 (x=0-0.35) grown by the Czochralski method[J]. Journal of Applied Physics, 2023, 133(3): 035702. [24] VARLEY J B, PERRON A, LORDI V, et al. Prospects for n-type doping of (AlxGa1-x)2O3 alloys[J]. Applied Physics Letters, 2020, 116(17): 172104. [25] MU S, PEELAERS H, ZHANG Y, et al. Orientation-dependent band offsets between (AlxGa1-x)2O3 and Ga2O3[J]. Applied Physics Letters, 2020, 117(25): 252104. [26] SWALLOW J E N, PALGRAVE R G, MURGATROYD P A E, et al. Indium gallium oxide alloys: electronic structure, optical gap, surface space charge, and chemical trends within common-cation semiconductors[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2807-2819. [27] YANG Z N, CHEN W S, KUANG S L, et al. Crystal phase, electronic structure, and surface band bending of (InxGa1-x)2O3 alloy wide-band-gap semiconductors[J]. Crystal Growth & Design, 2022, 22(12): 7325-7330. [28] SARKER J, GARG P, RAUF A, et al. Microscopic and spectroscopic investigation of (AlxGa1-x)2O3 films: unraveling the impact of growth orientation and aluminum content[J]. Advanced Materials Interfaces, 2025, 12(2): 2301016. [29] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [30] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [31] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [32] MA J N, SUN Y, LIN J Y, et al. Achieving high transparent β-Ga2O3 through AlGa-InGa-VO[J]. Journal of Alloys and Compounds, 2019, 792: 405-410. |